DOI QR코드

DOI QR Code

Anti-cancer Effects and Molecular Mechanisms of Withaferin A

Withaferin A의 다양한 항암 효과 및 분자생화학적 기전

  • Woo, Seon Min (Department of Immunology, School of Medicine, Keimyung University) ;
  • Min, Kyoung-Jin (Department of Immunology, School of Medicine, Keimyung University) ;
  • Kwon, Taeg Kyu (Department of Immunology, School of Medicine, Keimyung University)
  • 우선민 (계명대학교 의과대학 면역학교실) ;
  • 민경진 (계명대학교 의과대학 면역학교실) ;
  • 권택규 (계명대학교 의과대학 면역학교실)
  • Received : 2013.03.01
  • Accepted : 2013.03.20
  • Published : 2013.03.30

Abstract

Withaferin A is a steroidal lactone purified from the Indian medicinal plant Withania somnifera. It exhibits a wide variety of activities, including anti-tumor, anti-inflammation, and immunomodulation properties. In this review, we focused on the anti-cancer effects of withaferin A. Withaferin A inhibits cell proliferation, metastasis, invasion, and angiogenesis in cancer cells. Furthermore, it sensitized irradiation, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-, and doxorubicin-mediated apoptosis. The results showed that multiple mechanisms were involved in withaferin A-mediated anti-cancer effects. First, withaferin A increased intracellular reactive oxygen species (ROS) production and induced ER stress- and mitochondria-mediated apoptosis. Second, withaferin A inhibited the signaling pathways (Jak/STAT, Akt, Notch, and c-Met), which are important in cell survival, proliferation, and metastasis. Third, it induced apoptosis and inhibited cancer cell migration through the up-regulation of prostate apoptosis protein-4 (Par-4). Finally, withaferin A up-regulated pro-apoptotic protein expression levels through the inhibition of proteasome activity. Our findings suggested that withaferin A is a potential, potent therapeutic agent.

Withaferin A는 Withania somnifera에서 추출한 천연물질로 스테로이드성 락톤(steroidal lactone)으로 항암, 항염증, 면역억제기능을 가진다. 본 연구에서는 withaferin A의 다양한 기능 중 항암효과에 대하여 논하고자 한다. Withaferin A는 암세포에서 세포의 분열, 전이, 침투 및 혈관생성을 억제함으로써 항암작용을 나타내는 것으로 알려져 있다. 또한, 기존에 사용되고 있던 항암요법인 방사선 용법과 저농도의 항암제와 withaferin A를 함께 병합 처리하면 암세포의 세포사멸을 현저하게 증가시키는 약물 민감화 작용을 한다. 이러한 withaferin A에 의한 항암작용에는 다양한 신호전달체계가 수반된다. 우선, withaferin A는 세포 내 활성산소의 양을 증가시키고, ER stress와 미토콘드리아 매개의 세포사멸을 유도한다. 둘째로, withaferin A는 세포의 성장과 분열, 전이에 중요한 Jak/STAT, Akt, Notch, 그리고 c-Met의 신호전달을 억제한다. 셋째, withaferin A는 prostate apoptosis protein-4의 발현을 증가시켜 세포사멸을 유도하거나 세포의 이동을 억제한다. 마지막으로, withaferin A는 proteasome의 활성을 억제하여 세포사멸 유도단백질의 발현을 증가시킴으로써 암세포사멸을 증가시킨다. 이러한 결과를 바탕으로 withaferin A는 새로운 항암제로서의 가능성을 가지고 있다.

Keywords

References

  1. Affar el, B., Luke, M. P., Gay, F., Calvo, D., Sui, G., Weiss, R. S., Li, E. and Shi, Y. 2006. Targeted ablation of Par-4 reveals a cell type-specific susceptibility to apoptosis-inducing agents. Cancer Res 66, 3456-3462. https://doi.org/10.1158/0008-5472.CAN-05-0964
  2. Archana, R. and Namasivayam, A. 1999. Antistressor effect of Withania somnifera. J Ethnopharmacol 64, 91-93.
  3. Bargagna-Mohan, P., Hamza, A., Kim, Y. E., Khuan Abby Ho, Y., Mor-Vaknin, N., Wendschlag, N., Liu, J., Evans, R. M., Markovitz, D. M., Zhan, C. G., Kim, K. B. and Mohan, R. 2007. The tumor inhibitor and antiangiogenic agent with-aferin A targets the intermediate filament protein vimentin. Chem Biol 14, 623-634. https://doi.org/10.1016/j.chembiol.2007.04.010
  4. Bhatnagar, M., Sisodia, S. S. and Bhatnagar, R. 2005. Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats. Ann N Y Acad Sci 1056, 261-278. https://doi.org/10.1196/annals.1352.027
  5. Bhattacharya, S. K., Satyan, K. S. and Ghosal, S. 1997. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol 35, 236-239.
  6. Boccaccio, C., Ando, M., Tamagnone, L., Bardelli, A., Michieli, P., Battistini, C. and Comoglio, P. M. 1998. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285-288. https://doi.org/10.1038/34657
  7. Choi, M. J., Park, E. J., Min, K. J., Park, J. W. and Kwon, T. K. 2011. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro 25, 692-698. https://doi.org/10.1016/j.tiv.2011.01.010
  8. Choudhary, M. I., Hussain, S., Yousuf, S., Dar, A., Mudassar and Atta ur, R. 2010. Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71, 2205-2209. https://doi.org/10.1016/j.phytochem.2010.08.019
  9. Devi, P. U., Sharada, A. C. and Solomon, F. E. 1995. In vivo growth inhibitory and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett 95, 189-193. https://doi.org/10.1016/0304-3835(95)03892-Z
  10. El-Guendy, N. and Rangnekar, V. M. 2003. Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 283, 51-66. https://doi.org/10.1016/S0014-4827(02)00016-2
  11. Fong, M. Y., Jin, S., Rane, M., Singh, R. K., Gupta, R. and Kakar, S. S. 2012. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 7, e42265-e42280. https://doi.org/10.1371/journal.pone.0042265
  12. Fuska, J., Fuskova, A., Rosazza, J. P. and Nicholas, A. W. 1984. Novel cytotoxic and antitumor agents. IV. Withaferin A: relation of its structure to the in vitro cytotoxic effects on P388 cells. Neoplasma 31, 31-36.
  13. Goetsch, L., Caussanel, V. and Corvaia, N. 2013. Biological significance and targeting of c-Met tyrosine kinase receptor in cancer. Front Biosci 18, 454-473. https://doi.org/10.2741/4114
  14. Grogan, P. T., Sleder, K. D., Samadi, A. K., Zhang, H., Timmermann, B. N. and Cohen, M. S. 2012. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs. (In press)
  15. Hahm, E. R. and Singh, S. V. 2012. Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett. (In press)
  16. Ju, L. and Zhou, C. 2013. Association of integrin beta1 and c-MET in mediating EGFR TKI gefitinib resistance in non-small cell lung cancer. Cancer Cell Int 13, 15-22. https://doi.org/10.1186/1475-2867-13-15
  17. Kaileh, M., Vanden Berghe, W., Heyerick, A., Horion, J., Piette, J., Libert, C., De Keukeleire, D., Essawi, T. and Haegeman, G. 2007. Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282, 4253-4264. https://doi.org/10.1074/jbc.M606728200
  18. Kalthur, G. and Pathirissery, U. D. 2010. Enhancement of the response of B16F1 melanoma to fractionated radiotherapy and prolongation of survival by withaferin A and/or hyperthermia. Integr Cancer Ther 9, 370-377. https://doi.org/10.1177/1534735410378664
  19. Koduru, S., Kumar, R., Srinivasan, S., Evers, M. B. and Damodaran, C. 2010. Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9, 202-210.
  20. Lee, J., Hahm, E. R. and Singh, S. V. 2010. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis 31, 1991-1998. https://doi.org/10.1093/carcin/bgq175
  21. Lee, J., Sehrawat, A. and Singh, S. V. 2012. Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat 136, 45-56. https://doi.org/10.1007/s10549-012-2239-6
  22. Lee, T. J., Um, H. J., Min do, S., Park, J. W., Choi, K. S. and Kwon, T. K. 2009. Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic Biol Med 46, 1639-1649. https://doi.org/10.1016/j.freeradbiomed.2009.03.022
  23. Maitra, R., Porter, M. A., Huang, S. and Gilmour, B. P. 2009. Inhibition of NFkappaB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. J Inflamm (Lond) 6, 15-19. https://doi.org/10.1186/1476-9255-6-15
  24. Malik, F., Kumar, A., Bhushan, S., Khan, S., Bhatia, A., Suri, K. A., Qazi, G. N. and Singh, J. 2007. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12, 2115-2133. https://doi.org/10.1007/s10495-007-0129-x
  25. Mandal, C., Dutta, A., Mallick, A., Chandra, S., Misra, L. and Sangwan, R. S. 2008. Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13, 1450-1464. https://doi.org/10.1007/s10495-008-0271-0
  26. Manoharan, S., Panjamurthy, K., Balakrishnan, S., Vasudevan, K. and Vellaichamy, L. 2009. Circadian time-dependent chemopreventive potential of withaferin-A in 7,12-dimethylbenz[a]anthracene-induced oral carcinogenesis. Pharmacol Rep 61, 719-726. https://doi.org/10.1016/S1734-1140(09)70125-2
  27. Manoharan, S., Panjamurthy, K., Menon, V. P., Balakrishnan, S. and Alias, L. M. 2009. Protective effect of Withaferin-A on tumour formation in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis in hamsters. Indian J Exp Biol 47, 16-23.
  28. Mayola, E., Gallerne, C., Esposti, D. D., Martel, C., Pervaiz, S., Larue, L., Debuire, B., Lemoine, A., Brenner, C. and Lemaire, C. 2011. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16, 1014-1027. https://doi.org/10.1007/s10495-011-0625-x
  29. Miele, L. 2006. Notch signaling. Clin Cancer Res 12, 1074-1079. https://doi.org/10.1158/1078-0432.CCR-05-2570
  30. Misra, L., Lal, P., Chaurasia, N. D., Sangwan, R. S., Sinha, S. and Tuli, R. 2008. Selective reactivity of 2-mercaptoethanol with 5beta,6beta-epoxide in steroids from Withania somnifera. Steroids 73, 245-251. https://doi.org/10.1016/j.steroids.2007.10.006
  31. Mohan, R., Hammers, H. J., Bargagna-Mohan, P., Zhan, X. H., Herbstritt, C. J., Ruiz, A., Zhang, L., Hanson, A. D., Conner, B. P., Rougas, J. and Pribluda, V. S. 2004. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7, 115-122. https://doi.org/10.1007/s10456-004-1026-3
  32. Munagala, R., Kausar, H., Munjal, C. and Gupta, R. C. 2011. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32, 1697-1705. https://doi.org/10.1093/carcin/bgr192
  33. Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., Hui, C. C., Clevers, H., Dotto, G. P. and Radtke, F. 2003. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33, 416-421. https://doi.org/10.1038/ng1099
  34. Noh, H. J., Lee, S. J., Sung, E. G., Song, I. H., Kim, J. Y., Woo, C. H., Kwon, T. K. and Lee, T. J. 2012. CHOP down-regulates cFLIP(L) expression by promoting ubiquitin/ proteasome-mediated cFLIP(L) degradation. J Cell Biochem 113, 3692-3700. https://doi.org/10.1002/jcb.24242
  35. Oh, J. H., Lee, T. J., Kim, S. H., Choi, Y. H., Lee, S. H., Lee, J. M., Kim, Y. H., Park, J. W. and Kwon, T. K. 2008. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 13, 1494-1504. https://doi.org/10.1007/s10495-008-0273-y
  36. Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R. and Dixit, V. M. 1997. An antagonist decoy receptor and a death domain- containing receptor for TRAIL. Science 277, 815-818. https://doi.org/10.1126/science.277.5327.815
  37. Peters, S. and Adjei, A. A. 2012. MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol 9, 314-326. https://doi.org/10.1038/nrclinonc.2012.71
  38. Rah, B., Amin, H., Yousuf, K., Khan, S., Jamwal, G., Mukherjee, D. and Goswami, A. 2012. A novel MMP-2 inhibitor 3-azidowithaferin A (3-azidoWA) abrogates cancer cell invasion and angiogenesis by modulating extracellular Par-4. PLoS One 7, e44039-e44052. https://doi.org/10.1371/journal.pone.0044039
  39. Rasool, M. and Varalakshmi, P. 2006. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascul Pharmacol 44, 406-410. https://doi.org/10.1016/j.vph.2006.01.015
  40. Samadi, A. K., Cohen, S. M., Mukerji, R., Chaguturu, V., Zhang, X., Timmermann, B. N., Cohen, M. S. and Person, E. A. 2012. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumour Biol 33, 1179-1189. https://doi.org/10.1007/s13277-012-0363-x
  41. Santagata, S., Xu, Y. M., Wijeratne, E. M., Kontnik, R., Rooney, C., Perley, C. C., Kwon, H., Clardy, J., Kesari, S., Whitesell, L., Lindquist, S. and Gunatilaka, A. A. 2012. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7, 340-349. https://doi.org/10.1021/cb200353m
  42. Schroder, M. and Kaufman, R. J. 2005. The mammalian unfolded protein response. Annu Rev Biochem 74, 739-789. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  43. Sells, S. F., Wood, D. P., Jr., Joshi-Barve, S. S., Muthukumar, S., Jacob, R. J., Crist, S. A., Humphreys, S. and Rangnekar, V. M. 1994. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5, 457-466.
  44. Sharada, A. C., Solomon, F. E., Devi, P. U., Udupa, N. and Srinivasan, K. K. 1996. Antitumor and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma in vivo. Acta Oncol 35, 95-100. https://doi.org/10.3109/02841869609098486
  45. Srinivasan, S., Ranga, R. S., Burikhanov, R., Han, S. S. and Chendil, D. 2007. Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67, 246-253. https://doi.org/10.1158/0008-5472.CAN-06-2430
  46. Stan, S. D., Hahm, E. R., Warin, R. and Singh, S. V. 2008. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68, 7661-7669. https://doi.org/10.1158/0008-5472.CAN-08-1510
  47. Stan, S. D., Zeng, Y. and Singh, S. V. 2008. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60 Suppl 1, 51-60. https://doi.org/10.1080/01635580802381477
  48. Stephanou, A. 2004. Role of STAT-1 and STAT-3 in ischaemia/ reperfusion injury. J Cell Mol Med 8, 519-525. https://doi.org/10.1111/j.1582-4934.2004.tb00476.x
  49. Suttana, W., Mankhetkorn, S., Poompimon, W., Palagani, A., Zhokhov, S., Gerlo, S., Haegeman, G. and Berghe, W. V. 2010. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols. Mol Cancer 9, 99-120. https://doi.org/10.1186/1476-4598-9-99
  50. Szegezdi, E., Logue, S. E., Gorman, A. M. and Samali, A. 2006. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7, 880-885. https://doi.org/10.1038/sj.embor.7400779
  51. Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., Liu, Y., Tighiouart, M., Vertino, P. M., Harvey, R. D., Garcia, A. and Marcus, A. I. 2011. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129, 2744-2755. https://doi.org/10.1002/ijc.25938
  52. Um, H. J., Min, K. J., Kim, D. E. and Kwon, T. K. 2012. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun 427, 24-29. https://doi.org/10.1016/j.bbrc.2012.08.133
  53. Yang, E. S., Choi, M. J., Kim, J. H., Choi, K. S. and Kwon, T. K. 2011. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol In Vitro 25, 1803-1810. https://doi.org/10.1016/j.tiv.2011.09.016
  54. Yang, E. S., Choi, M. J., Kim, J. H., Choi, K. S. and Kwon, T. K. 2011. Withaferin A enhances radiation-induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl-2 downregulation and Akt inhibition. Chem Biol Interact 190, 9-15. https://doi.org/10.1016/j.cbi.2011.01.015
  55. Yang, H., Shi, G. and Dou, Q. P. 2007. The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from "Indian winter cherry". Mol Pharmacol 71, 426-437.
  56. Yang, H., Wang, Y., Cheryan, V. T., Wu, W., Cui, C. Q., Polin, L. A., Pass, H. I., Dou, Q. P., Rishi, A. K. and Wali, A. 2012. Withaferin a inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One 7, e41214-e41213. https://doi.org/10.1371/journal.pone.0041214
  57. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891. https://doi.org/10.1016/S0092-8674(01)00611-0
  58. Yousuf, S. K., Majeed, R., Ahmad, M., Sangwan, P., Purnima, B., Saxsena, A. K., Suri, K. A., Mukherjee, D. and Taneja, S. C. 2011. Ring A structural modified derivatives of withaferin A and the evaluation of their cytotoxic potential. Steroids 76, 1213-1222. https://doi.org/10.1016/j.steroids.2011.05.012
  59. Yu, Y., Hamza, A., Zhang, T., Gu, M., Zou, P., Newman, B., Li, Y., Gunatilaka, A. A., Zhan, C. G. and Sun, D. 2010. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79, 542-551. https://doi.org/10.1016/j.bcp.2009.09.017
  60. Zhang, X., Mukerji, R., Samadi, A. K. and Cohen, M. S. 2011. Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med 11, 84-93. https://doi.org/10.1186/1472-6882-11-84
  61. Zhang, X., Samadi, A. K., Roby, K. F., Timmermann, B. and Cohen, M. S. 2012. Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A. Gynecol Oncol 124, 606-612. https://doi.org/10.1016/j.ygyno.2011.11.044