DOI QR코드

DOI QR Code

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework

다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계

  • Kwon, Hyung-Il (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yi, Seul-Gi (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Seongim (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Keunbae (Aeropropulsion Systems Team, Korea Aerospace Research Institute)
  • Received : 2012.11.08
  • Accepted : 2013.02.28
  • Published : 2013.03.01

Abstract

A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

본 연구에서는 프로펠러나 헬리콥터 로터와 같은 회전체의 공력 최적 설계를 위한 다단 최적 설계 프레임워크를 제안한다. 이 프레임워크는 플랜폼 설계와 단면의 형상 설계를 반복적으로 수행하는 설계 전략을 통해 회전체의 공력 성능 향상을 목표로 한다. 플랜폼 설계의 단계에서는 유전 알고리즘과 2차원 CFD 데이터베이스 기반의 깃 요소 모멘텀 이론을 이용하여 빠른 시간에 회전체의 공력 특성을 평가하여 최적점을 탐색하였다. 플랜폼 설계 후 단면에 유입되는 유동 조건을 예측하여 단면 형상 최적 설계를 수행하였다. 설계 과정에서 보다 면밀하게 유동 특성이 분석될 수 있도록 2차원 N-S 해석자와 민감도 기반의 최적화 알고리즘을 통해 최적해를 탐색하였다. 단면 형상이 설계된 후에는 최적의 유동 조건을 산출할 수 있도록 플랜폼 설계를 반복적으로 수행하였다. 본 프레임워크를 1kW급 전기추진용 항공기 프로펠러 설계에 적용하여 그 유효성을 3차원 N-S 해석과 풍동 실험을 통해 검증하였다. 설계 후, 풍동 실험 결과를 기준으로 약 5%의 프로펠러 효율 증가를 얻을 수 있었다.

Keywords

References

  1. J. S. Cho, S. C. Lee, 2012, "A new evolutionary algorithm for aerodynamic design optimization of axis wind turbine," J. of Computers & Fluids, Vol.27, No. 2, pp147-152.
  2. Xudong, W., Shen, W. Z., Zhu, W. J., Sorensen, J. N., and Jin, C., 2009, "Shape Optimization of Wind Turbine Blades", Wind Energy, Vol.12, pp. 781-803. https://doi.org/10.1002/we.335
  3. Samad. A., Kim. K., Goel. T., Haftka. R.T., and Shyy. W., "Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization", Journal of Propulsion and Power, Vol.24, No.2, 2008, pp.302-310.
  4. Hyung-Il, Kwon., 2011, "Aerodynamic Sectional Design Optimization for Wind Turbine Rotor Blades by a Numerical Optimization Technique", M. S. Thesis, KAIST.
  5. Choi, S., Potsdam, M., Lee, K., Iaccarino, G., and Alonso, J. J., 2008, "Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method", AIAA Paper 2008-5810.
  6. Yim, Jinwoo, Lee, Byungjoon and Kim, Chongam, 2008, "Multi-Stage Aerodynamic Design of Multi-Body Geometries by Kriging-Based models and Adjoint Variable Approach," 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii.
  7. Rwigema, M. K., 2010, "Propeller blade element momentum theory with vortex wake deflection,", 27th International congress of the aeronautical sciences.
  8. Hicks R. M. and Henne, P. A.,1978,"Wing Design by Numerical Optimization," Journal of Aircraft, Vol.15, No.7, pp.407-412. https://doi.org/10.2514/3.58379
  9. L. Dubuc, F. Cantariti, M. Woodgate, B. Gribben, K.J. Badcock, and B.E. Richard, 2000, "A grid deformation technique for unsteady flow computations," International Journal for numerical methods in fluid, Vol.32, pp.285-311. https://doi.org/10.1002/(SICI)1097-0363(20000215)32:3<285::AID-FLD939>3.0.CO;2-C
  10. R. W. Prouty, 1985, Helicopter Aerodynamics, Phillips Pub. Co..
  11. Kim, J.-H., Yi, J., Ko, S.-H., Ahn, J. W., Kim, C., Kim, Y., and Cho, K. W., 2008, "e-AIRS: Construction of an aerodynamic integrated research system on the e-science infrastructure," J. KSAS, Vol. 36, No. 5, pp. 438-447. https://doi.org/10.5139/JKSAS.2008.36.5.428
  12. http://iitk.ac.in/kangal/index/shtml
  13. Hyung-Il Kwon and Seongim Choi, 2012, "Development of e-Science based aerodynamic design optimization framework for an airfoil," 2012 Spring KSCFE Conference, pp. 612-619.
  14. S. S. Kim, Chongam Kim, O. H. Rho, and S. K. Hong, 2003, "Cures for the shock instability : Development of a shock-stable Roe scheme," Journal of Computational Physics, Volume 185, Issue 2, pp.342-374 https://doi.org/10.1016/S0021-9991(02)00037-2
  15. Menter, F. R., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA J., Vol. 32, No. 8, pp.1598-1605. https://doi.org/10.2514/3.12149
  16. Dominique Thevenin, Gabor Janiga, 2008, Optimization and Computational Fluid Dynamics, Springer.
  17. Jan A. Snyman, 1997, Practical Mathematical Optimization : An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, Springer.
  18. Hak-Jin Lee, Min-Seok Ryu, Hyung-Il, Kwon, and Seongim Choi, 2012, "A study for aerodynamic design optimization of airfoil using e-science based aerodynamic design optimization framework," 2012 Spring KSCFE Conference, pp. 628-637.
  19. Poomin Park, Ohsik Hwang, Youngmun Kim, Chuntaek Kim, and Kijung Kwon, 2011, "Wind Tunnel Test on Propellers for Middle Size Electric Propulsion UAV," 2011 KSPE Fall Conference, Vol.1, pp.1-3.
  20. P. L. Roe, 1981, "Approximate Riemann solvers, parameter vectors and difference schemes," Journal of Computational Physics, Vol.43, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  21. Kurganov, Alexander and Doron Levy, 2000, "A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations," SIAM J. Sci. Comput., 22, 1461-1488 https://doi.org/10.1137/S1064827599360236
  22. Chang, M. J.; Chow, L. C.; Chang, W. S. ,1991, "Improved alternating-direction implicit method for solving transient three-dimensional heat diffusion problems," Numerical Heat Transfer, Part B: Fundamentals 19 (1): pp.69- 84. https://doi.org/10.1080/10407799108944957
  23. Jae-Eun, Lee., 2005, "A Study of Convergence Enhancement using Preconditioning Methods in Compressible Low Speed Flows", M.S.Thesis, KAIST.
  24. http://www.grc.nasa.gov/WWW/k-12/airplane/shape.html
  25. Kang-Kyu Jin, 2004, Genetic algorithm and theory application, KyoWoo.
  26. Ashok D. Belegundu and Tirupathi R. Chandrupatla, 2005, Optimization Concepts and Applications in Engineering 3th Ed., Pearson Education.
  27. Jan A. Snyman, 1997, Practical Mathematical Optimization : An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, Springer.
  28. G. N. Vanderplaats and S.R. Hansen,1989, DOT User's Manual, VMA Engineering.
  29. Kim, J-H, Yi, J., Ko, S-H, Ahn, J. W., Kim, C., Kim, Y. and Cho, K. W., 2008, "e-AIRS : Construction of an Aerodynamic Integrated Research System on the e-Science Infrastructure," J. KSAS, Vol. 36, No. 5, pp. 438-447 https://doi.org/10.5139/JKSAS.2008.36.5.428

Cited by

  1. MULTI STAGE SHAPE OPTIMIZATION OF CENTRIFUGAL FAN FOR HOME APPLIANCE USING CFD vol.21, pp.3, 2016, https://doi.org/10.6112/kscfe.2016.21.3.039