DOI QR코드

DOI QR Code

다공성 복합재료의 삼차원 거동 예측을 위한 분리-혼합 기법의 확장

Extended Unmixing-Mixing Scheme for Prediction of 3D Behavior of Porous Composites

  • Choi, Hoi Kil (Department of Aerospace Engineering, Chonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
  • 투고 : 2012.12.12
  • 심사 : 2013.01.13
  • 발행 : 2013.02.01

초록

고온에서 열분해 과정을 겪는 복합재료의 탄화 및 삭마 과정의 표면 침식은 주로 두께 방향으로 진행된다. 본 논문에서는 다공성 복합재료의 면내 및 두께 방향 거동을 효과적으로 기술하기 위하여 분리-혼합 기법을 적용하였다. 섬유와 기지로 구성된 복합재료의 횡방향 등방성 가정을 통해 분리-혼합 방정식을 삼차원으로 확장하였으며, 기공 압력, 열팽창, 열분해 과정의 수축 효과를 포함하였다. 다공성 복합재료의 대표 체적 요소를 유한요소법으로 해석하여 면내 및 두께 방향의 물성 값을 상호 비교함으로써, 확장된 분리-혼합 기법의 타당성을 확인하였다.

Pyrolysis and surface recession of charring composites are progressed primarily in the thickness direction. The unmixing-mixing scheme is applied to describe the in-plane and through-thickness behaviors of porous composites. The extended unmixing-mixing equations are based on transverse isotropy of unidirectionally fiber-reinforced composites. The strain components of gas pressure in pores, thermal expansion, and chemical shrinkage are included in the constitutive model. By analyzing micromechanical representative volume elements of porous composites, the validity of the derived equations are examined.

키워드

참고문헌

  1. Matsuura, Y., Hirai, K., Kamita, T., Sato, Y., Takatoya, T., and Igawa, H., "A Challenge of Modeling Thermo-Mechanical Response of Silica-Phenolic Composites under High Heating Rates," AIAA Paper 2011-139, 2011, pp. 1-19.
  2. Wu, Y., "Theory and Numerical Modeling on Thermomechanical Response of Decomposing Composites," Ph. D. Dissertation, Ohio State Univ., 1995.
  3. Russell, G. W. and Strobel, F., "Modeling Approach for Intumescing Charring Heatshield Materials," Journal of Spacecraft and Rockets, Vol. 43, No. 4, 2006, pp. 739-749. https://doi.org/10.2514/1.15153
  4. Sullivan, R. M. and Salamon, N. J., "A Finite Element Method for the Thermochemical Decomposition of Polymeric Materials - I. Theory," International Journal of Engineering Science, Vol. 30, No. 4, 1992, pp. 431-441. https://doi.org/10.1016/0020-7225(92)90035-F
  5. Wu, Y. and Katsube, N., A "Constitutive Model for Thermomechanical Response of Decomposing Composites under High Heating Rates," Mechanics of Materials, Vol. 22, 1996, pp. 189-201. https://doi.org/10.1016/0167-6636(95)00041-0
  6. Sullivan, R. M. and Salamon, N. J., "A Finite Element Method for the Thermochemical Decomposition of Polymeric Materials - II. Carbon Phenolic Composites," International Journal of Engineering Science, Vol. 30, No. 7, 1992, pp. 939-951. https://doi.org/10.1016/0020-7225(92)90021-8
  7. Aboudi, J., Mechanics of Composite Materials: Unified Micromechanical Approach, Elsevier, 1991, pp. 111-124.
  8. Hyer, M. W., Stress Analysis of Fiber- Reinforced Composite Materials, McGraw-Hill, 1998, pp. 83-145.
  9. Bowles, D. E., "Micromechanics Analysis of Space Simulated Thermal Deformations and Stresses in Continuous Fiber Reinforced Composites," NASA TM 102633, 1990, pp. 5-28.
  10. Shin, E. S. and Kim, S. J., "Thermoviscoplasticity of Composite Materials by Using a Matrix-Partitioned Unmixing-Mixing Scheme," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 23, No. 3, 1995, pp. 85-92.
  11. Huang, Z.-M., "Simulation of the Mechanical Properties of Fibrous Composites by the Bridging Micromechanics Model," Composites: Part A, Vol. 32, 2001, pp. 145-172.
  12. Kim, M. J., Park, S. H, Park, J. S., Lee, W. I., and Kim, M. S., "Micro-Mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-Scale Modeling Method," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 1, 2013, pp. 17-24. https://doi.org/10.5139/JKSAS.2013.41.1.17

피인용 문헌

  1. Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models vol.17, pp.2, 2016, https://doi.org/10.5139/IJASS.2016.17.2.175