DOI QR코드

DOI QR Code

GPS-based Augmented Reality System for Social Network Environment

소셜 네트워크 환경에서 GPS기반 증강현실 시스템

  • 양승의 (배재대학교 컴퓨터공학과) ;
  • 유걸 (배재대학교 컴퓨터공학과) ;
  • 정회경 (배재대학교 컴퓨터공학과)
  • Received : 2013.01.07
  • Accepted : 2013.01.29
  • Published : 2013.03.31

Abstract

Recently, researches on augmented reality(AR) are actively being conducted, and on addition of AR in social network system has become a necessity. In this paper, we propose GPS-based AR system for social network. This proposed system adds the recent check-in coordinates by automatically synchronizing a friend list in facebook and represents those added location coordinates in a real-world environment by using AR. Marker-based AR system that was commonly used by existing users consumes too much storage space and processing frequency for driving handle devices. But, location-based AR application can solves the disvantages of the standard marker=based AR system. Therefore, this proposed system allows an user with iOS hand devices to use GPS-based AR system by automatically searching the optimal speed for wifi and 4G. This will improve social network service.

최근 증강현실(Augmented Reality, AR)에 대한 연구가 활발히 진행 중이고, 소셜 네트워크 시스템(Social Network System)에 증강현실 기능의 추가 필요성이 부각되고 있다. 본 논문에서는 소셜 네트워크를 위한 GPS기반 증강현실 시스템을 제안한다. 제안한 시스템은 페이스북(facebook)에서 친구 목록을 자동으로 동기화하여 최근 체크인 좌표를 추가하고, AR을 이용하여 추가된 위치 좌표를 실제 환경에서 표현하는 시스템이다. 기존 이용자들이 사용했던 마커기반 AR 시스템은 핸드 장치 구동에 필요한 프로세싱 빈도와 저장 공간의 소모가 많다. 그러나, 위치기반 AR어플리케이션은 기존 마커기반 AR 시스템의 단점을 해결 할 수 있다. 따라서, 본 논문의 시스템은 향후 iOS 핸드 장치를 가지고 있는 사용자가 GPS기반 AR 시스템을 Wifi와 4G 네트워크에 대해 최적의 속도를 자동으로 검색하여 소셜 네트워크 서비스의 제공이 가능하다.

Keywords

References

  1. A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In ICCV, 2007
  2. S. Branson, C. Wah, B. Babenko, F. Schroff, P. Welinder, P. Perona, and S. Belongie. Visual recognition with humans in the loop. In ECCV, 2010
  3. S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR, 2006
  4. C. A. Collin and P. A.Mc Mullen. Subordinate-level categorization relies on high spatial frequencies to a greater degree than basic-level categorization. Percept. Psychophys, Vol. 67 No. 2, pp.354-364, 2005 https://doi.org/10.3758/BF03206498
  5. V. Delaitre, I. Laptev, and J. Sivic. Recognizing human actions in still images: A study of bag-of-features and part-based representations. In BMVC, 2010
  6. Facebook iOS SDK, https://developes.facebook.com/blog/post/2012/07/11/facebook-sdk-3-0-beta-for-ios/, July 2012
  7. AR + APP + LBS The Augmented Reality attention is real-time and interactive (DAMN DIGITAL), Feb. 2012
  8. H.Lee, R.Grosse, R.Ranganath and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. ICML, 2009.
  9. ARKit http://cafe.naver.com/danbistudio/269, July 2010
  10. P. F. Felzenszwalb, R. B. Girshick, D.McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE T. Pattern Anal., Vol. 32 No. 9, pp.1627-1645, 2010 https://doi.org/10.1109/TPAMI.2009.167
  11. A. Hauptmann, R. Yan, W. Lin, M. Christel, and H. Wactlar. Can high-level concepts fill the semantic gap in video retrieval a case study with broadcast news. IEEE TMM, Vol 9 No. 5, p.958, 2007