DOI QR코드

DOI QR Code

5-값 상호상관관계를 갖는 새로운 비선형 이진수열군의 설계와 선형스팬 분석

Design and Analysis of Linear Span of A New Family of Non-linear Binary Sequences with 5-Valued Cross-Correlation Functions

  • 투고 : 2012.10.22
  • 심사 : 2012.11.13
  • 발행 : 2013.03.31

초록

여러 가지 디지털통신 시스템에서 많이 사용되고 있는 의사 난수열을 설계하는데 있어 가장 중요한 문제는 생성된 수열들 사이의 상호상관관계가 낮은 수열을 생성하는 것이다. 본 논문에서는 Gold 계열의 수열의 합성으로 이루어지는 새로운 이진수열군 $S^r=\{Tr_1^m\{[Tr_m^n(a{\alpha}^t+{\alpha}^{dt})]^r\}{\mid}a{\in}GF(2^n),\;0{\leq}t<2^n-1\}$를 제안하고 $d=2^{n-1}(3{\cdot}2^m-1)$일 때 상호상관관계 함숫값을 구한다. 여기서 n=2m이고 gcd(r, $2^m-1$)=1이다. 또한 특별한 r에 대하여 이진수열군 $S^r$의 선형스팬을 분석한다. 제안된 수열은 Gold 계열 수열의 확장이기도 하고 GMW수열의 확장이기도 하다.

The design of PN(Pseudo Noise) sequences with good cross-correlation properties is important for many research areas in communication systems. In this paper we propose new family of binary sequences $S^r=\{Tr_1^m\{[Tr_m^n(a{\alpha}^t+{\alpha}^{dt})]^r\}{\mid}a{\in}GF(2^n),\;0{\leq}t<2^n-1\}$ composed of Gold-like sequences and find the value of cross-correlation function when $d=2^{n-1}(3{\cdot}2^m-1)$, where n=2k, gcd(r, $2^m-1$)=1. Also we analyze the linear span of $S^r$ for some special r. Proposed sequences are extension of Gold-like sequences and GMW-sequences.

키워드

참고문헌

  1. R.A. Scholtz, "The origins of spread-spectrum communications," IEEE Trans. Commun., vol. COM-30, pp. 822-854, 1982.
  2. M.P. Ristenbatt and J.L. Daw, Jr., "Performance criteria for spread spectrum communications," IEEE Trans. Commun., vol. COM-25, no. 8, pp. 756-763, 1977.
  3. D.V. Sarwarte and M.B. Pursley, "Crosscorrelation properties of pseudorandom and related sequences," Proc. IEEE., vol. 68, no. 5, pp. 593-620, 1980. https://doi.org/10.1109/PROC.1980.11697
  4. M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt, Spread Spectrum Communications, vol. 1, Rockville, MD: Computer Science Press," 1985.
  5. S.W. Golomb, Shift Register Sequences, Holden Day, 1967.
  6. Y. Niho, Multi-valued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequences, Ph.D. thesis, University of Southern California, 1972.
  7. R. Gold, "Maximal recursive sequences with 3-valued cross-correlation functions," IEEE Trans. Inf. Theory, vol 14, pp. 154-156, 1967. https://doi.org/10.1109/TCT.1967.1082686
  8. T. Kasami, "Weight distribution of Bose- Chaudhuri- Hocquenghem codes", in Combi- natorial Mathematics and Its Applications, Chapel Hill, NC: Univ. North Carolina Press, 1969.
  9. R.A. Scholtz and R. Welch, "GMW sequences," IEEE Trans. Inform. Theory, vol. IT-30, pp. 548-553, 1984.
  10. T. Helleseth and P.V. Kumar, "Sequences with low correlation," in Handbook of Coding Theory, V.S. Pless and W.C. Huffman, Eds., Amsterdam, The Vetherland: North-Holland, vol. II, pp.1765-1853, 1998.
  11. J.S. No, and P.V. Kumar, "A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span," IEEE Trans. Inform. Theory, vol. IT-35(2), pp. 371-379, 1989. https://doi.org/10.1109/18.32131
  12. G. Gong, "New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case," IEEE trans. Inform. Theory, vol. 4, pp. 2847-2867, 2002.
  13. P. Rosendahl, Niho type cross-correlation functions and related equations, Ph.D. thesis, Turku center for computer science, 2004.
  14. F.X. Zeng and Z.Y. Zhang, "Several Families of Sequences with Low Correlation and Large Linear Span", IEEE Trans. Fundamentals. vol. E91-A, pp. 2263-2268, 2008. https://doi.org/10.1093/ietfec/e91-a.8.2263
  15. E.L. Key, "An analysis of the structure and complexity of nonlinear binary sequence generators," IEEE Trans. Inform. Theory, vol. IT-22, no. 6, pp. 732-736, 1976.
  16. R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press 1997.
  17. 조성진, 유한체 및 그 응용, 교우사, 2007.
  18. 최언숙, 조성진, "최적의 상호상관관계를 갖는 이진 수열의 설계," 한국전자통신학회, 제6권, 제4호, pp.539-544, 2011.
  19. 노종선, "PN 시퀀스의 암호학적인 비도 특성," 통신정보보호학회지, 제3권, 제4호, pp. 7-14, 1993.

피인용 문헌

  1. 5-값 상호상관관계를 갖는 비선형 이진수열군의 상호상관관계 빈도 분석 vol.17, pp.12, 2013, https://doi.org/10.6109/jkiice.2013.17.12.2875