DOI QR코드

DOI QR Code

Perfusion Parameters of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Patients with Rectal Cancer: Correlation with Microvascular Density and Vascular Endothelial Growth Factor Expression

  • Kim, Yeo-Eun (Department of Radiology, Seoul Medical Center) ;
  • Lim, Joon Seok (Department of Radiology, Research Institute of Radiological Science, Yonsei University Health System) ;
  • Choi, Junjeong (Department of Pathology, Yonsei University Wonju College of Medicine) ;
  • Kim, Daehong (Molecular Imaging & Therapy Branch, National Cancer Center) ;
  • Myoung, Sungmin (Department of Medical Information, Jungwon University) ;
  • Kim, Myeong-Jin (Department of Radiology, Research Institute of Radiological Science, Yonsei University Health System) ;
  • Kim, Ki Whang (Department of Radiology, Research Institute of Radiological Science, Yonsei University Health System)
  • Received : 2012.09.25
  • Accepted : 2013.07.15
  • Published : 2013.11.01

Abstract

Objective: To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Materials and Methods: Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer ($K^{trans}$) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters ($K^{trans}$, Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Results: Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p = 0.662 for $K^{trans}$; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p = 0.741 for $K^{trans}$; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). Conclusion: DCE-MRI perfusion parameters, $K^{trans}$ and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

Keywords

References

  1. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990;82:4-6 https://doi.org/10.1093/jnci/82.1.4
  2. Choi HJ, Hyun MS, Jung GJ, Kim SS, Hong SH. Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 1998;55:575-581 https://doi.org/10.1159/000011915
  3. Brasch RC, Li KC, Husband JE, Keogan MT, Neeman M, Padhani AR, et al. In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 2000;7:812-823 https://doi.org/10.1016/S1076-6332(00)80630-3
  4. Kang H, Lee HY, Lee KS, Kim JH. Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts. Korean J Radiol 2012;13:371-390 https://doi.org/10.3348/kjr.2012.13.4.371
  5. Kim JK, Jang YJ, Cho G. Multidisciplinary functional MR imaging for prostate cancer. Korean J Radiol 2009;10:535-551 https://doi.org/10.3348/kjr.2009.10.6.535
  6. de Lussanet QG, Backes WH, Griffioen AW, Padhani AR, Baeten CI, van Baardwijk A, et al. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 2005;63:1309-1315 https://doi.org/10.1016/j.ijrobp.2005.04.052
  7. Ceelen W, Smeets P, Backes W, Van Damme N, Boterberg T, Demetter P, et al. Noninvasive monitoring of radiotherapyinduced microvascular changes using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in a colorectal tumor model. Int J Radiat Oncol Biol Phys 2006;64:1188-1196 https://doi.org/10.1016/j.ijrobp.2005.10.026
  8. George ML, Dzik-Jurasz AS, Padhani AR, Brown G, Tait DM, Eccles SA, et al. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 2001;88:1628-1636 https://doi.org/10.1046/j.0007-1323.2001.01947.x
  9. Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT. Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 2007;8:63-74 https://doi.org/10.1016/S1470-2045(06)71012-9
  10. Atkin G, Taylor NJ, Daley FM, Stirling JJ, Richman P, Glynne- Jones R, et al. Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg 2006;93:992-1000 https://doi.org/10.1002/bjs.5352
  11. Zhang XM, Yu D, Zhang HL, Dai Y, Bi D, Liu Z, et al. 3D dynamic contrast-enhanced MRI of rectal carcinoma at 3T: correlation with microvascular density and vascular endothelial growth factor markers of tumor angiogenesis. J Magn Reson Imaging 2008;27:1309-1316 https://doi.org/10.1002/jmri.21378
  12. Yao WW, Zhang H, Ding B, Fu T, Jia H, Pang L, et al. Rectal cancer: 3D dynamic contrast-enhanced MRI; correlation with microvascular density and clinicopathological features. Radiol Med 2011;116:366-374 https://doi.org/10.1007/s11547-011-0628-2
  13. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357-367 https://doi.org/10.1002/mrm.1910170208
  14. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
  15. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102-125 https://doi.org/10.1593/neo.81328
  16. Weinmann HJ, Laniado M, Mützel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 1984;16:167-172
  17. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638-648 https://doi.org/10.1259/0007-1285-26-312-638
  18. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med 1991;324:1-8 https://doi.org/10.1056/NEJM199101033240101
  19. Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol 1966;210:1299-1303
  20. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249-257 https://doi.org/10.1038/35025220
  21. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58-62 https://doi.org/10.1126/science.1104819
  22. Janssen MH, Aerts HJ, Kierkels RG, Backes WH, Ollers MC, Buijsen J, et al. Tumor perfusion increases during hypofractionated short-course radiotherapy in rectal cancer: sequential perfusion-CT findings. Radiother Oncol 2010;94:156-160 https://doi.org/10.1016/j.radonc.2009.12.013
  23. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987;47:3039-3051
  24. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 2004;52:420-429 https://doi.org/10.1002/mrm.20161
  25. Benjaminsen IC, Brurberg KG, Ruud EB, Rofstad EK. Assessment of extravascular extracellular space fraction in human melanoma xenografts by DCE-MRI and kinetic modeling. Magn Reson Imaging 2008;26:160-170 https://doi.org/10.1016/j.mri.2007.06.003
  26. Tuncbilek N, Karakas HM, Altaner S. Dynamic MRI in indirect estimation of microvessel density, histologic grade, and prognosis in colorectal adenocarcinomas. Abdom Imaging 2004;29:166-172 https://doi.org/10.1007/s00261-003-0090-2
  27. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging 2002;16:430-450 https://doi.org/10.1002/jmri.10181
  28. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 2002;94:883-893 https://doi.org/10.1093/jnci/94.12.883
  29. Fujisawa T, Watanabe J, Akaboshi M, Ohno E, Kuramoto H. Immunohistochemical study on VEGF expression in endometrial carcinoma--comparison with p53 expression, angiogenesis, and tumor histologic grade. J Cancer Res Clin Oncol 2001;127:668-674 https://doi.org/10.1007/s004320100273
  30. Giatromanolaki A, Koukourakis MI, Kakolyris S, Turley H, O'Byrne K, Scott PA, et al. Vascular endothelial growth factor, wild-type p53, and angiogenesis in early operable non-small cell lung cancer. Clin Cancer Res 1998;4:3017-3024
  31. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-1309 https://doi.org/10.1126/science.2479986
  32. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003;3:643-651 https://doi.org/10.2174/1566524033479465
  33. Fujiwaki R, Hata K, Iida K, Koike M, Miyazaki K. Immunohistochemical expression of thymidine phosphorylase in human endometrial cancer. Gynecol Oncol 1998;68:247-252 https://doi.org/10.1006/gyno.1997.4929
  34. Jackson A, O'Connor JP, Parker GJ, Jayson GC. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 2007;13:3449-3459 https://doi.org/10.1158/1078-0432.CCR-07-0238

Cited by

  1. Analysis of the Relationship Between Ultrasound of Breast Cancer DOT-SDI and the Expression of MVD, VEGF and HIF-1α vol.70, pp.1, 2014, https://doi.org/10.1007/s12013-014-9883-x
  2. Time-Intensity Curve Parameters in Rectal Cancer Measured Using Endorectal Ultrasonography with Sterile Coupling Gels Filling the Rectum: Correlations with Tumor Angiogenesis and Clinicopathological F vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/587806
  3. Advanced imaging of colorectal cancer: From anatomy to molecular imaging vol.7, pp.3, 2013, https://doi.org/10.1007/s13244-016-0465-x
  4. Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Symptomatic Uterine Fibroids and Normal Uterus: A Feasibility Study vol.14, pp.2, 2013, https://doi.org/10.5812/iranjradiol.36213
  5. Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and vol.38, pp.8, 2017, https://doi.org/10.3174/ajnr.a5252
  6. Dynamics of angiogenesis and cellularity in rabbit VX2 tumors using contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging vol.15, pp.3, 2013, https://doi.org/10.3892/ol.2017.7657
  7. Histogram Analysis of Perfusion Parameters from Dynamic Contrast-Enhanced MR Imaging with Tumor Characteristics and Therapeutic Response in Locally Advanced Rectal Cancer vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/3724393
  8. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density vol.43, pp.6, 2013, https://doi.org/10.1007/s00261-017-1320-3
  9. Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role of perfusion parameters in the assessment of response to treatment vol.124, pp.5, 2013, https://doi.org/10.1007/s11547-018-0978-0
  10. The Role of Contrast-Enhanced Imaging for Colorectal Cancer Management vol.15, pp.6, 2013, https://doi.org/10.1007/s11888-019-00443-1
  11. Dynamic contrast-enhanced MR imaging of rectal cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with conventional contrast-enhanced 3D VIBE sequence vol.45, pp.2, 2013, https://doi.org/10.1007/s00261-019-02225-7
  12. Evaluation of Mesorectal Microcirculation With Quantitative Dynamic Contrast-Enhanced MRI vol.215, pp.6, 2020, https://doi.org/10.2214/ajr.19.22116
  13. The Relationship Between Peritumoral Brain Edema and the Expression of Vascular Endothelial Growth Factor in Vestibular Schwannoma vol.12, pp.None, 2013, https://doi.org/10.3389/fneur.2021.691378