Multi-Small Target Tracking Algorithm in Infrared Image Sequences

적외선 연속 영상에서 다중 소형 표적 추적 알고리즘

  • Received : 2012.12.03
  • Accepted : 2013.02.01
  • Published : 2013.01.30

Abstract

In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.

본 논문은 적외선 연속 영상에서 배경 추정 필터와 칼만 필터, 평균 이동 알고리즘을 사용하여 다중 소형 표적들의 소멸과 생성시에도 표적들의 위치를 추적하는 시스템을 제안한다. 배경 추정 영상파 원 영상과의 차 영상을 사용해서 정지 영상에서의 표적 후 정보를 구하고, 칼만 필터와 후보 표적의 분류를 이용하여 다중 표적을 추적 한다. 마지막으로 평균 이동 알고리즘을 사용하여 표적들의 세부 위치를 조정한다. 실험을 통하여 배경 추정 필터들의 성능을 비교 분석하였고, 제안하는 알고리즘이 기존의 추적 시스템과 비교하여 안정적으로 추적이 됨을 확인하였다.

Keywords

References

  1. B. Zhang, T . Zhang, Z. Cao, K. Zhan g, "Fast new samll-target detection algorithm based on a modified partial differ ential equation in infrared clutter," Optical Engineering, vol. 46, no. 10, pp. 106401-1 -106401- 6, Oct. 2007. https://doi.org/10.1117/1.2799509
  2. Suyog D. Deshpand e, M.H.Er, V. Ronda, Phillip Chan, "Max-Mean and Max-Median filters for detection of small targets", Proc. SPIE Conference on, vol.3809, pp. 74-83, July, 1999.
  3. D. Comaniciu, P. Meer, "Mean Shift: A Robust Approach Toward Feature Space Analysis," IEEE Trans, vol. 24, no. 5, pp. 1 - 18, May 2002.
  4. Y. Cao, R. Liu, J, Yang, "Small Target Detection Using Two-Dimensional Least Mean Square (TDLMS) Filter Based on Neighborhood Analysis," Int. J, Infrared Milli, Waves, vol. 29, pp. 188-200, 2008. https://doi.org/10.1007/s10762-007-9313-x
  5. C.Y. Li, H. B. Ji, "Marginalized Particle Filter based Track-Before-Detect Algorithm for Small Dim Infrared Target," AICI, vol. 3, pp. 321-325, 2009.
  6. Y. H. Liu, Q. Q. Yan, W. Liu, H. Yuan, G.Y. Zhang, "An effective target tracking algorithm in infrared images video", WICOM, pp. 1-4, 2010.
  7. Ofir Nichtern, S.R. Rotman, "Tracking of a Point Target in an IR Sequence using Dynamic Programming Approach", EEEI, 24th Convention of, pp. 265-269, 2006.
  8. Lei Yang, Weiping Lu, Jie Yang, "A New Tracking Method for Small Infrared Targets", ICIP, Int. Conference on, pp. 3609-3612, 2009.
  9. R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME - Journal of Basic Engineering, 82 (Series D): 35-45. 1960. https://doi.org/10.1115/1.3662552
  10. R. Rosales, S. Sclaroff, "3D trajectory quiled recognition of actions." proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 117-123, 1999.
  11. W. R. Gilks, C. Berzuini, "Following a moving target - Monte Carlo inference for dynamic Bayesian models", J. R. Statist. Sco. B, pp. 127-146, 2001.
  12. Rago, C., Willett, P., Streit, R., "Direct Data Fusion Using the PMHT", ACC, vol. 3, pp. 1698-1702, 1995.
  13. D. Comaniciu, V. Ramesh and P. Meer, "Kernel -Based Object Tracking," IEEE Trans. Patt. Analy. Mach. Intell., vol. 25, no. 5, pp. 564-577, May 2003. https://doi.org/10.1109/TPAMI.2003.1195991
  14. A. P. Dempster, N. M. Laird, D. B. Rubin. "Maximu -m Likelihood from In-Complete Data via the EM Algorithm,". Journal of the Royal Statistical Society: Series B, 39(1), pp. 1 - 38, November 1977.
  15. Tan Liu, Xiang Li, "Infrared Small Targets Detections and Tracking based on Soft Morphology Top-Hat and SPRT-PMHT," International Congress on Image and Signal Processing, pp. 968-972, Oct. 2010.