DOI QR코드

DOI QR Code

Quantitative Evaluation of Geotextile Void Structures Using Digital Image Analysis

디지털 이미지 분석을 이용한 지오텍스타일 공극 분포의 정량화

  • Kim, Duhwan (Samsung C&T Corporation, Civil ENG Center)
  • Received : 2013.01.10
  • Accepted : 2013.03.24
  • Published : 2013.03.30

Abstract

This paper presents results from a study undertaken to quantitatively evaluate the geotextile pore sizes using optical image analysis. The evaluation was conducted by observing surfaces of coupons cut from resin-impregnated specimens of geotextile-geomembrane layered under various load conditions. Stereological concepts were applied to collect representative specimens from a series of laboratory tests. The sizes of voids enclosed by filaments were expressed in terms of the largest inscribing opening size (LIOS) distribution. The opening diameter corresponding to the 50% cumulative frequency decreased by about 45mm as the load increased from 10 to 300kPa and recovered to about 90% of its initial state on unloading back to 10kPa. The average void size was reduced by 32 and 16.5% as the geotextile was sheared against a textured geomembrane under normal stresses of 100 and 300kPa, respectively. The results showed how the LIOS distribution varied as a function of normal stress and interface shear displacement against a smooth and a textured geomembrane surfaces.

본 논문에서는 지오텍스타일 공극 크기 분포를 이미지 분석방법을 이용하여 정량적으로 산출하였다. 연구과정은 실내시험을 통해 지오텍스타일-지오멤브레인 층으로 된 재료를 에폭시 레진으로 포화시킨 후, 양생, 절단하여 그 표면을 디지털 광학현미경으로 관찰하고 정량화함으로 이루어졌다. 여기서는 재료공학에서 주로 사용하는 공간학(stereology)의 개념을 사용하였으며, 지오텍스타일 필라멘트에 의해 둘러싸인 공극의 크기를 최대내접공극크기분포(LIOS)로 표현하였다. 지오텍스타일 내부 축적빈도 50%에 해당하는 공극직경이 압축응력이 10kPa에서 300kPa로 증가함에 따라 $45{\mu}m$가량 감소하였으며, 다시 압축응력을 10kPa로 되돌렸을 경우 초기치의 90%정도 수준으로 회복하였다. 마찰형 지오멤브레인 표면에서 연직응력 100, 300 kPa을 받으며 전단되었을 경우 평균 공극의 크기가 각가 32, 16.5% 감소하였다. 본 논문의 시험 및 분석 결과는 지오텍스타일 내부의 최대내접공극 크기분포가 표면거칠기가 다른 지오멤브레인 표면에서 압축 및 인터페이스 전단됨에 따라 어떻게 변화하는지를 보여준다.

Keywords

References

  1. ASTM D 4751, Standard Test Method for Determining Apparent Opening Size of a Geotextile, ASTM International, West Conshohocken, Pennsylvania, USA.
  2. ASTM D 6767, Standard Test Method for Pore Size Characteristics of Geotextiles by Capillary Flow Test, ASTM International, West Conshohocken, Pennsylvania, USA.
  3. ASTM D 1505, Standard Test Method for Density of Plastics by the Density-Gradient Technique. ASTM International, West Conshohocken, Pennsylvania, USA.
  4. ASTM D 1603, Standard Test Method for Carbon Black in Plastics, ASTM International, West Conshohocken, Pennsylvania, USA.
  5. ASTM D 4491, Standard Test Methods for Water Permeability of Geotextiles by Permittivity, ASTM International, West Conshohocken, Pennsylvania, USA.
  6. ASTM D 4632, Standard Test Method for Grab Breaking Load and Elongation of Geotextiles, ASTM International, West Conshohocken, Pennsylvania, USA.
  7. ASTM D 4751, Standard Test Method for Determining Apparent Opening Size of a Geotextile, ASTM International, West Conshohocken, Pennsylvania, USA.
  8. ASTM D 4833, Standard Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Product, ASTM International, West Conshohocken, Pennsylvania, USA.
  9. ASTM D 5199, Standard Test Method for Measuring the Nominal Thickness of Geosynthetics, ASTM International, West Conshohocken, Pennsylvania, USA.
  10. ASTM D 5261, Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM International, West Conshohocken, Pennsylvania, USA.
  11. ASTM D 6693, Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes, ASTM International, West Conshohocken, Pennsylvania, USA.
  12. ASTM D 1004, Standard Test Method for Tear Resistance (Graves Tear) of Plastic Film and Sheeting, ASTM International, West Conshohocken, Pennsylvania, USA.
  13. Bhatia, S. K., and Soliman, A. F. (1990). "Frequency Distribution of Void Ratio of Granular Materials Determined by an Image Analyzer," Soils and Foundations, Vol.30. No.1, pp.1-16.
  14. Bhatia, S. K., Smith, J. L., and Christopher, B. R. (1996). "Geotextile Characterization and Pore Size Distribution: Part III. Comparison of Methods and Application to Design," Geosynthetics International, Vol.3, No.3, pp.301-328. https://doi.org/10.1680/gein.3.0064
  15. Dove, J. E., and Frost, J. D. (1996). "A Method for Measuring Geomembrane Roughness," Geosynthetics International, Vol.3, pp.369-392. https://doi.org/10.1680/gein.3.0067
  16. Frost, J. D., and Kuo, C. Y. (1996). "Automated Determination of the Distribution of Local Void Ratio from Digital Images," Geotechnical Testing Journal, Vol.19, No.2, pp.107-117. https://doi.org/10.1520/GTJ10334J
  17. Frost, J. D., and Park, J. Y. (2003). "A Critical Assessment of the Moist-Tamping Technique," ASTM Geotechnical Testing Journal, Vol.26, No.1, pp.57-70.
  18. Frost, J. D., Kim, D., and Lee, S. (2012). "Microscale geomembrane-granular material interactions," KSCE Journal of Civil Engineering, Vo. 3, No.1, pp.79-92.
  19. Gokhale, A. M., and Drury, W. J. (1994). "Efficient Measurement of Microstructural Surface Area Using Trisector," Metallurgical and Materials Transactions A, Vol.25A, pp. 919-928.
  20. Hebeler, G. H., Frost, J. D., and Myers, A. T. (2005). "Quantifying Hook and Loop Interaction in Textured Geomembrane-Geotextile Systems," Geotextiles and Geomembranes, Vol.23, No.1, pp.77-105. https://doi.org/10.1016/j.geotexmem.2004.06.002
  21. Ibrahim, A. A., and Kagawa, T. (1991). Microscopic Measurement of Sand Fabric from Cyclic Tests Causing Liquefaction, Geotechnical Testing Journal, GTJODJ, Vol.14, No.4, pp. 371-382. https://doi.org/10.1520/GTJ10205J
  22. Kim, D., and Frost, J. D. (2005). "Multi-Scale Assessment of Geotextile-Geomembrane Interaction," Proc. of NAGS 2005/GRI 19 Conference, Las Vegas, USA, 8p.
  23. Kim, D. (2006). Multi-Scale Assessment of Geotextile-Geomembrane Interaction, Ph.D. Thesis, Georgia Institute of Technology, 250p.
  24. Koerner, R. M. (1998) Designing With Geosynthetics, Fourth, Prince Hall, 761p.
  25. Lombard, G., Rolin, A., and Wolff, C. (1989). "Theoretical and Experimental Opening Sizes of Heat-Bonded Geotextiles," Textile Research Journal, Vol.59, No.4, pp.208-217. https://doi.org/10.1177/004051758905900404
  26. Rebenfeld, L., and Miller, B. (1995). "Using Liquid Flow to Quantify the Pore Structure of Fibrous Materials," Journal of Textile Institute, Vol.86, No.2, pp.241-251. https://doi.org/10.1080/00405009508631330
  27. Rigo, J. M., Lhote, F., Rollin, A. L., Mlynarek, J., and Lombard, G. (1990). "Influence of Geotextile Structure on Pore Size Determination," ASTM Special Technical Publication, Vol.12, No.4, pp.90-101.
  28. Underwood, E. E. (1969). "Stereology, or the quantitative evaluation of microstructure," Journal of Microscopy, Vol.89, Pt2, pp.161-180. https://doi.org/10.1111/j.1365-2818.1969.tb00663.x
  29. Underwood, E. E. (1970). Quantitative Stereology, Addison-Wesley Publishing Company, Reading, Maryland, 274p.
  30. Vaughan, N. P., and Brown, R. C. (1996). "Observations of the microscopic structure of fibrous filters," Journal of Filtration and Separation, Vol.33, No.8, pp.741-748. https://doi.org/10.1016/S0015-1882(97)84332-7