DOI QR코드

DOI QR Code

조립재료에 대한 MD구성모델의 매개 변수 연구

Parametric Study of MD Constitutive Model for Coarse-Grained Soils

  • Choi, Changho (Dept. of Geotechnical Engineering, Korea Institute of Construction Technology)
  • 투고 : 2013.02.07
  • 심사 : 2013.03.11
  • 발행 : 2013.03.30

초록

조립재료는 댐, 철도, 교량 구조물 건설시 제체, 성토재, 뒤채움재, 배수재 등으로 널리 사용되고 있으며, 이러한 구조물의 거동해석을 위한 수치해석을 위해 구성모델에 대한 연구가 다양하게 진행되어 왔다. 본 논문에서는 조립재료의 거동을 예측하기 위해 개발된 구성모델에 대한 변수 연구를 수행하였다. 구성모델은 한계상태이론에 근간한 bounding surface 모델로서 한 세트의 모델 정수를 활용하여 배수 조건, 구속압, 간극비에 상관없이 조립재료의 거동을 구현할 수 있는 장점을 지니고 있다. 구성모델은 탄성 파라미터, 한계상태 파라미터, 모델 고유파라미터를 활용하여 재료의 거동을 분석하며, 본 연구에서는 모델 고유 파라미터에 대한 변수 연구를 수행하였다. 변수 연구를 통해 구성모델이 조립재료의 가장 큰 특징인 비관계유통법칙(non-associative flow rule)에 따른 체적팽창 및 응력경로 변화에 따른 이동경화 현상을 적절히 모사할 수 있음을 파악하였다.

Coarse-grained soils are typical engineering materials commonly used in many civil engineering applications such as structural fills, subgrade and drainage fills for dam, railway and bridge. Various researches have been performed with related to constitutive laws for numerical analysis of such structures. This paper presents a parametric study for a constitutive model for coarse grained materials. The model is a kind of the bounding surface models based on critical state theory. A distinct feature of the model is to capture the response of coarse-grained materials with different void ratios and confining pressures using a single set of model parameters. The model behavior is defined with a set of elastic parameters, critical state parameters, and model-specific parameters. The parametric study was performed for the model-specific parameters. The result of parametric study shows that the model is capable to capture stress-dilatancy behavior and kinematic-hardening under non-associative plastic flow.

키워드

참고문헌

  1. Banerjee, S., Davis, R. O. and Sribalaskandarajah, K. (1992), "Simple double-hardening model for geomaterial", Journal of Geotechnical Engineering, ASCE, Vol.118, No.6, pp.889-901. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(889)
  2. Chen, W. F. (1994), Constitutive Equations for Engineering Materials, Vol 2, Elsevier Science, Amsterdam.
  3. Choi, C. H. (2004), Physical and Mathematical Modeling of Coarse-Grained Soils, PhD Thesis, University of Washington, Seattle.
  4. Dafalias, Y. F. (1986), "Bounding surface plasticity I: Mathematical foundation and hypo-plasticity", Journal of Engineering Mechanics, ASCE, Vol.112, No.9, pp.966-987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)
  5. Dafalias, Y. F. and Herrmann, L. R. (1986), "Bounding surface plasticity II: Application to isotropic cohesive soils," Journal of Engineering Mechanics, ASCE, Vol.112, No.12, pp.1263-1981. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:12(1263)
  6. Manzari, M. T. and Dafalias, Y. F. (1997), "A critical state two-surface plasticity model for sands", Geotechnique, Vol.47, No.2, pp.255-272. https://doi.org/10.1680/geot.1997.47.2.255
  7. Manzari, M. T. and Prachathananukit, R. (2001), "On integration of a cyclic soil plasticity model", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.25, No.6, pp.525-549. https://doi.org/10.1002/nag.140
  8. Nova, R. and Wood, D. M. (1979), "A constitutive model for sand in triaxial compression", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.3, pp.255-278. https://doi.org/10.1002/nag.1610030305
  9. Prevost, J. H. (1985), "A simple plasticity theory for frictional cohesionless soils", Soil Dynamics and Earthquake Engineering, Vol.4, pp.9-17. https://doi.org/10.1016/0261-7277(85)90030-0
  10. Taylor, T., Fragaszy, R. J. and Pond, E. (1995), "Strength of gap-graded gravelly soils. In Static and Dynamic Properties of Gravelly Soils", Geotechnical Special Publication, No.56, pp.20-34.
  11. Wood, D. M., Belkheir, K. and Liu, D. F. (1994), "Strain softening and state parameter for sand modeling", Geotechnique, Vol.44, No.2, pp.335-339. https://doi.org/10.1680/geot.1994.44.2.335