DOI QR코드

DOI QR Code

Changes in Stanniocalcin-2 and Hypoxia-Inducible Factor-1α mRNA Expression in Medaka Oryzias dancena Exposed to Acute Hypoxia

저산소환경에 의한 송사리(Oryzias dancena)의 Stanniocalcin-2와 Hypoxia-Inducible Factor-1α mRNA 발현의 변화

  • Shin, Ji Hye (Department of Marine Molecular Biotechnology, Gangneung-Wonju National University) ;
  • Sohn, Young Chang (Department of Marine Molecular Biotechnology, Gangneung-Wonju National University)
  • 신지혜 (강릉원주대학교 해양분자생명공학과) ;
  • 손영창 (강릉원주대학교 해양분자생명공학과)
  • Received : 2012.09.17
  • Accepted : 2013.02.12
  • Published : 2013.02.28

Abstract

Some fish live in aquatic environments with low or temporally changing $O_2$ availability. Variation in dissolved oxygen (DO) levels requires behavioral, physiological, and biochemical adaptations to ensure the uptake of sufficient $O_2$. Several species are relatively well adapted to tolerate low $O_2$ partial pressures (hypoxia). The medaka (Oryzias dancena ) is an important model organism for biomedical research that shows remarkable tolerance to hypoxia. We investigated the regulation and role of hypoxia-inducible factor-1 (HIF-$1{\alpha}$) as a general hypoxia-response gene and stanniocalcin-2 (STC2), which is one of the genes regulated by HIF-$1{\alpha}$ in mammals under hypoxia. We subjected adult male medaka to the following three acute hypoxia regimes: 1, 24, and 72 h at DO = $1.8{\pm}0.5$ ppm. The changes in STC2 and HIF-$1{\alpha}$ mRNA were monitored using quantitative real-time reverse-transcription PCR. We found strong upregulation of HIF-$1{\alpha}$ mRNA in the livers of fish exposed to hypoxia. Hypoxia rapidly upregulated STC-2 mRNA expression in muscle, but not in the brain, gills, liver, or intestine. Therefore, unlike in mammals, hypoxia might regulate O. dancena STC-2 expression in an HIF-$1{\alpha}$-independent manner.

Keywords

References

  1. Bouras T, Southey MC, Chang AC, Reddel RR, Willhite D, Glynne R, Henderson MA, Armes JE and Venter DJ. 2002. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res 62, 1289-1295.
  2. Butkus A, Roche PJ, Fernley RT, Haralambidis J, Penschow JD, Ryan GB, Trahair JF, Tregear GW and Coghlan JP. 1987. Purification and cloning of a corpuscles of Stannius protein from Anguilla australis. Mol Cell Endocrinol 54, 123-133. https://doi.org/10.1016/0303-7207(87)90149-3
  3. Chang AC and Reddel RR. 1998. Identification of a second stanniocalcin cDNA in mouse and human: stanniocalcin 2. Mol Cell Endocrinol 141, 95-99. https://doi.org/10.1016/S0303-7207(98)00097-5
  4. Chen N, Chen LP, Zhang J, Chen C, Wei XL, Gul Y, Wang WM and Wang HL. 2012. Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1alpha/2alpha/3alpha of the hypoxiasensitive freshwater species, Chinese sucker. Gene 498, 81-90. http://dx.doi.org/10.1016/j.gene.2011.12.058
  5. DiMattia GE, Varghese R and Wagner GF. 1998. Molecular cloning and characterization of stanniocalcin-related protein. Mol Cell Endocrinol 146, 137-140. https://doi.org/10.1016/S0303-7207(98)00163-4
  6. Ellard JP, McCudden CR, Tanega C, James KA, Ratkovic S, Staples JF and Wagner GF. 2007. The respiratory effects of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates. Mol Cell Endocrinol 264, 90-101. http://dx.doi.org/10.1016/j.mce.2006.10.008
  7. Gagliardi AD, Kuo EY, Raulic S, Wagner GF and DiMattia GE. 2005. Human stanniocalcin-2 exhibits potent growth-suppressive properties in transgenic mice independently of growth hormone and IGFs. Am J Physiol Endocrinol Metab 288, 92-105. http://dx.doi.org/10.1152/ajpendo.00268.2004
  8. He LF, Wang TT, Gao QY, Zhao GF, Huang YH, Yu LK and Hou YY. 2011. Stanniocalcin-1 promotes tumor angiogenesis through up-regulation of VEGF in gastric cancer cells. J Biomed Sci 18, 39. http://dx.doi.org/10.1186/1423-0127-18-39
  9. Huang LE, Arany Z, Livingston DM and Bunn HF. 1996. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271, 32253-32259. https://doi.org/10.1074/jbc.271.50.32253
  10. Huang LE, Gu J, Schau M and Bunn HF. 1998. Regulation of hypoxia-inducible factor 1alpha is mediated by an $O_2$-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95, 7987-7992. https://doi.org/10.1073/pnas.95.14.7987
  11. Ieta K, Tanaka F, Yokobori T, Kita Y, Haraguchi N, Mimori K, Kato H, Asao T, Inoue H, Kuwano H and Mori M. 2009. Clinicopathological significance of stanniocalcin 2 gene expression in colorectal cancer. Int J Cancer 125, 926-931. http://dx.doi.org/10.1002/ijc.24453
  12. Ishibashi K, Miyamoto K, Taketani Y, Morita K, Takeda E, Sasaki S and Imai M. 1998. Molecular cloning of a second human stanniocalcin homologue (STC2). Biochem Biophys Res Commun 250, 252-258. https://doi.org/10.1006/bbrc.1998.9300
  13. Jensen K, Freundlich M, Bunemann L, Therkelsen K, Hansen H and Cold GE. 1993. The effect of indomethacin upon cerebral blood flow in healthy volunteers. The influence of moderate hypoxia and hypercapnia. Acta Neurochir (Wien) 124, 114-119. https://doi.org/10.1007/BF01401132
  14. Ju Z, Wells MC, Heater SJ and Walter RB. 2007. Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia. Comp Biochem Physiol C Toxicol Pharmacol 145, 134-144. http://dx.doi.org/10.1016/j.cbpc.2006.06.012
  15. Kallio PJ, Pongratz I, Gradin K, McGuire J and Poellinger L. 1997. Activation of hypoxia-inducible factor 1alpha: post-transcriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci U S A 94, 5667-5672. https://doi.org/10.1073/pnas.94.11.5667
  16. Kang CK, Tsai SC, Lee TH and Hwang PP. 2008. Differen tial expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp Biochem Physiol A Mol Integr Physiol 151, 566-575. http://dx.doi.org/10.1016/j.cbpa.2008.07.020
  17. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A and Wouters BG. 2002. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22, 7405-7416. https://doi.org/10.1128/MCB.22.21.7405-7416.2002
  18. Koumenis C and Wouters BG. 2006. "Translating" tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 4, 423-436. doi: 10.1158/1541-7786.MCR-06-0150
  19. Law AY and Wong CK. 2010. Stanniocalcin-2 promotes epithelial-mesenchymal transition and invasiveness in hypoxic human ovarian cancer cells. Exp Cell Res 316, 3425-3434. http://dx.doi.org/10.1016/j.yexcr.2010.06.026
  20. Liu G, Yang G, Chang B, Mercado-Uribe I, Huang M, Zheng J, Bast RC, Lin SH and Liu J. 2010. Stanniocalcin 1 and ovarian tumorigenesis. J Natl Cancer Inst 102, 812-827. http://dx.doi.org/10.1093/jnci/djq127
  21. Luo CW, Kawamura K, Klein C and Hsueh AJ. 2004. Paracrine regulation of ovarian granulosa cell differentiation by stanniocalcin (STC) 1: mediation through specific STC1 receptors. Molecular Endocrinology 18, 2085-2096. https://doi.org/10.1210/me.2004-0066
  22. Luo CW, Pisarska MD and Hsueh AJ. 2005. Identification of a stanniocalcin paralog, stanniocalcin-2, in fish and the paracrine actions of stanniocalcin-2 in the mammalian ovary. Endocrinology 146, 469-476. http://dx.doi.org/10.1210/en.2004-1197
  23. Meyer HA, Tolle A, Jung M, Fritzsche FR, Haendler B, Kristiansen I, Gaspert A, Johannsen M, Jung K and Kristiansen G. 2009. Identification of stanniocalcin 2 as prognostic marker in renal cell carcinoma. Eur Urol 55, 669-678. http://dx.doi.org/10.1016/j.eururo.2008.04.001
  24. Rahman MS and Thomas P. 2007. Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1alpha and HIF-2alpha, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene 396, 273-282. http://dx.doi.org/10.1016/j.gene.2007.03.009
  25. Salceda S and Caro J. 1997. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272, 22642-22647. https://doi.org/10.1074/jbc.272.36.22642
  26. Semenza GL. 1999. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15, 551-578. https://doi.org/10.1146/annurev.cellbio.15.1.551
  27. Shin J and Sohn YC. 2009. cDNA cloning of Japanese flounder stanniocalcin 2 and its mRNA expression in a variety of tissues. Comp Biochem Physiol A Mol Integr Physiol 153, 24-29. http://dx.doi.org/10.1016/j.cbpa.2008.11.014
  28. Soitamo AJ, Rabergh CM, Gassmann M, Sistonen L and Nikinmaa M. 2001. Characterization of a hypoxia-inducible factor (HIF-1alpha) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem 276, 19699-19705. https://doi.org/10.1074/jbc.M009057200
  29. Sundell K., Bjornsson BT, Itoh H and Kawauchi H. 1992. Chum Salmon (Oncorhynchus-Keta) Stanniocalcin Inhibits Invitro Intestinal Calcium-Uptake in Atlantic Cod (Gadus-Morhua). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 162, 489-495.
  30. Virani NA and Rees BB. 2000. Oxygen consumption, blood lactate and inter-individual variation in the gulf killifish, Fundulus grandis, during hypoxia and recovery. Comp Biochem Physiol A Mol Integr Physiol 126:397-405. https://doi.org/10.1016/S1095-6433(00)00219-1
  31. Wagner GF, Hampong M, Park CM and Copp DH. 1986. Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 63, 481-491. https://doi.org/10.1016/0016-6480(86)90149-8
  32. Wang GL, Jiang BH, Rue EA and Semenza GL. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  33. Wang GL and Semenza GL. 1995. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270, 1230-1237. https://doi.org/10.1074/jbc.270.3.1230
  34. Wawrowski A, Gerlach F, Hankeln T and Burmester T. 2011. Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J Comp Physiol B 181, 199-208. http://dx.doi.org/10.1007/s00360-010-0518-2
  35. Weber RE. 1982. Intraspecific adaptation of hemoglobin function in fish to oxygen availability. In: Exogenous and Endogenous Influences on Metabolic and Neural Control. Addink ADF and Spronk N, eds. Pergamon Press, Oxford, U.K., 87-102.
  36. Yeung BH, Law AY and Wong CK. 2012. Evolution and roles of stanniocalcin. Mol Cell Endocrinol 349, 272-280. http://dx.doi.org/10.1016/j.mce.2011.11.007
  37. Yeung HY, Lai KP, Chan HY, Mak NK, Wagner GF and Wong CK. 2005. Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. Endocrinology 146, 4951-4960. http://dx.doi.org/10.1210/en.2005-0365
  38. Yu RM, Chen EX, Kong RY, Ng PK, Mok HO and Au DW. 2006. Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model. BMC Mol Biol 7, 27. http://dx.doi.org/10.1186/1471-2199-7-27