DOI QR코드

DOI QR Code

A Study on the Performance Evaluation of Elliptic Curve Cryptography based on a Real Number Field

실수체 기반 타원곡선 암호의 성능 평가에 관한 연구

  • Woo, Chan-Il (Dept. of Information and Communication Engineering, Seoil University) ;
  • Goo, Eun-Hee (Dept. of Information and Communication Engineering, Seoil University) ;
  • Lee, Seung-Dae (Dept. of Electronic Engineering, Namseoul University)
  • Received : 2012.12.17
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

Recently, as the use of the applications like online banking and stock trading is increasing by the rapid development of the network, security of data content is becoming more and more important. Accordingly, public key or symmetric key encryption algorithm is widely used in open networks such as the internet for the protection of data. Generally, public key cryptographic systems is based on two famous number theoretic problems namely factoring or discrete logarithm problem. So, public key cryptographic systems is relatively slow compared to symmetric key cryptography systems. Among public key cryptographic systems, the advantage of ECC compared to RSA is that it offers equal security for a far smaller key. For this reason, ECC is faster than RSA. In this paper, we propose a efficient key generation method for elliptic curve cryptography system based on the real number field.

최근 들어, 네트워크의 급속한 발전으로 온라인 뱅킹과 주식 거래 같은 응용프로그램들의 사용이 증가함에 따라 데이터에 대한 보안은 점점 더 중요해 지고 있다. 따라서, 데이터 보호를 위해 인터넷과 같은 개방형 네트워크에서 공개키 또는 대칭키 암호 알고리즘이 널리 사용되고 있다. 일반적으로 공개키 암호시스템은 인수분해와 이산대수의 문제를 기반으로 하고 있어, 대칭키 암호시스템에 비해 처리속도가 상대적으로 느리다. 공개키 암호시스템 중 타원곡선 암호는 RSA에 비해 보다 작은 사이즈의 키를 사용하여도 동일한 보안성을 제공하는 장점이 있어 처리 속도가 빠르다. 본 논문에서는 실수체를 기반으로 하는 타원곡선 암호의 효율적인 키 생성 방법을 제안한다.

Keywords

References

  1. David J. Malan, Matt Welsh, Michael D. Smith, "A Public-key Infrastructure for Key Distribution in TinyOS Based on Elliptic Curve Cryptography", First IEEE International Conference on Sensor and Ad-hoc Communications and Network, Oct. 2004.
  2. N. Koblitz, "Elliptic Curve Cryptosystems," Mathemetics of Computation, Vol. 48, pp.203-209, 1987. https://doi.org/10.1090/S0025-5718-1987-0866109-5
  3. V. S. Miller, "Use of Elliptic Curves in Cryptography," in Advances in Cryptology-Proc. of CRYPTO'85, pp. 417-426, 1986.
  4. NIST, http://csrc.nist.gov/encryption
  5. IEEE, http://www.ieee.org
  6. Youngho Park, Public Key Encryption, Vol. 16, No. 3, Physics&High Technology, March, 2007.
  7. Eunhee Goo, Joonmo Kim, "Elliptic Curve Cryptography over the Real Number Plane," The 24th ITC-CSCC 2009, pp. 1177-1179, 2009.
  8. Mark Stamp, Information Security:Principles and Practice, Wiley, 2005.