DOI QR코드

DOI QR Code

Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews

사용자 영화평의 감정어휘 분석을 통한 영화검색시스템

  • Oh, Sung-Ho (Division of Computer and Information Technology, Daegu University) ;
  • Kang, Shin-Jae (Division of Computer and Information Technology, Daegu University)
  • 오성호 (대구대학교 컴퓨터.IT공학부) ;
  • 강신재 (대구대학교 컴퓨터.IT공학부)
  • Received : 2013.01.15
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

This paper proposed a movie retrieval system based on sentimental keywords extracted from user's movie reviews. At first, sentimental keyword dictionary is manually constructed by applying morphological analysis to user's movie reviews, and then keyword weights in the dictionary are calculated for each movie with TF-IDF. By using these results, the proposed system classify sentimental categories of movies and rank classified movies. Without reading any movie reviews, users can retrieve movies through queries composed by sentimental keywords.

본 논문에서는 사용자가 작성한 영화평으로부터 추출한 감정어휘에 기반한 영화검색시스템을 제안한다. 먼저, 사용자의 영화평을 형태소분석하고 수작업으로 감정어휘사전을 구축한다. 그 다음, 검색의 대상이 되는 영화별로 감정어휘사전에 포함되어 있는 감정어휘들의 가중치를 TF-IDF를 이용하여 계산한다. 이러한 결과를 이용하여 제안 시스템은 영화의 감정 분류를 결정하고, 랭킹하여 사용자에게 보여주게 된다. 사용자들은 영화평을 읽지 않고도, 감정 어휘로 구성된 질의어를 입력하여 원하는 영화를 찾을 수 있게 된다.

Keywords

References

  1. F. A. Nielsen, "A new ANEW: Evaluation of a word list for sentiment analysis in microblogs", Proceedings of the ESWC2011 Workshop, pp.93-99, May, 2011.
  2. P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth, "Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter", PLoS One(Peer-Reviewed, Open Access Journal), vol.6, no.12, e26752. doi:10.1371/journal .pone.0026752, Dec. 2011.
  3. I. J. Park, and K. H. Min, "List construction of Korean sentimental words and dimension retrieval", Korean Journal of Social and Personality Psychology, vol.19, no.1, pp. 109-129, 2005.
  4. M. S. Ko, and H. P. Shin, "Grading System of Movie Review through the Use of An Appraisal Dictionary and Computation of Semantic Segments", Korean Journal of Cognitive Science, vol.21, no.4, pp. 669-696, 2010. https://doi.org/10.19066/cogsci.2010.21.4.010
  5. H. G. Choi, and I. J. Hwang, "Emotion-based Music Recommendation System based on Twitter Document Analysis", Journal of KIISE, vol18, no.11, 2012.
  6. J. W. Hwang, and Y. J. Ko, "A Korean Sentence and Document Sentiment Classification System Using Sentiment Features", Journal of KIISE, vol.14, no.3, 2008. DOI: http://dx.doi.org/10.1145/1099554.1099713
  7. A. Esuli and F. Sebastiani, "Determining the Semantic Orientation of Terms through Gloss Classification," ACM, pp. 617-624, 2005.
  8. J. S. Myung, D. J. Lee, and S. G. Lee, "A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary", Journal of KIISE : Software and Applications, vol.35, no.6, 2008.

Cited by

  1. The Blog Polarity Classification Technique using Opinion Mining vol.15, pp.4, 2014, https://doi.org/10.9728/dcs.2014.15.4.559
  2. Movie Rating Inference by Construction of Movie Sentiment Sentence using Movie comments and ratings vol.16, pp.2, 2015, https://doi.org/10.7472/jksii.2015.16.2.41
  3. Development of Sentiment Analysis Model for the hot topic detection of online stock forums vol.22, pp.1, 2016, https://doi.org/10.13088/jiis.2016.22.1.187
  4. Sentiment analysis on movie review through building modified sentiment dictionary by movie genre vol.22, pp.2, 2016, https://doi.org/10.13088/jiis.2016.22.2.097