DOI QR코드

DOI QR Code

해양 홍조류 Laurencia sp. (Ceramiales: Rhodomelaceae)에서 분리한 Oceanisphaera sp. JJM57의 분리 및 동정

Isolation and Identification of Oceanisphaera sp. JJM57 from Marine Red Algae Laurencia sp. (Ceramiales: Rhodomelaceae)

  • 김만철 (한국수산자원관리공단 제주지사) ;
  • ;
  • 문영건 ((주)해림후코이단) ;
  • 김동휘 (제주대학교 해양의생명과학부 및 해양과 환경연구소) ;
  • 손홍주 (부산대학교 생명환경화학과) ;
  • 허문수 (제주대학교 해양의생명과학부 및 해양과 환경연구소)
  • Kim, Man-Chul (Korea Fisheries Resources Agency Jeju Station) ;
  • Dharaneedharan, S. (Department of Aquatic Biomedical Sciences and Marine and Envioronmental Institute, Jeju National University) ;
  • Moon, Young-Gun (Haerim Fucoidan Co., Ltd.) ;
  • Kim, Dong-Hwi (Department of Aquatic Biomedical Sciences and Marine and Envioronmental Institute, Jeju National University) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Heo, Moon-Soo (Department of Aquatic Biomedical Sciences and Marine and Envioronmental Institute, Jeju National University)
  • 투고 : 2013.02.05
  • 심사 : 2013.03.25
  • 발행 : 2013.03.31

초록

본 연구는 한국 제주도 조간대에 서식하는 홍조류로부터 분리된 JIM57 균주의 계통학적 특성을 조사하기 위하여 수행되었다. 16S rRNA gene 염기서열을 분석한 결과, 본 균주는 Oceanisphaera 속과 대단히 유사하였으며, Oceanisphaera litoralis DSM $15406^T$와 98.02%, O. donghaessis KCTC $12522^T$와 97.7%의 염기서열 상동성을 나타내었다. 본 균주는 그람양성의 호기성 구균으로써, 0.5-8.0%의 NaCl 및 $4-47^{\circ}C$에서 생육할 수 있었다. 본 균주는 Oceanisphaera litoralis DSM $15406^T$와 일부 생리학적 및 생화학적 특성을 공유하였으나 ethanol, proline 및 alanine 이용성에서는 차이가 있었다. 본 균주 genomic DNA의 GC 함량은 61.94 mol%였으며, 주요 균체 지방산 지방산으로서 $C_{16:1}$ ${\omega}7c$, iso-$C_{15:0}$ 2-OH, $C_{16:0}$, and $C_{18:1}$ ${\omega}7c$를 함유하고 있었다. 또한 DNA-DNA 상동성을 조사한 결과, JIM57 균주는 O.litoralis DSM $15406^T$ 및 O. donghaessis KCTC $12522^T$와 별개의 종임을 알 수 있었다. 이러한 결과들을 종합한 결과, JIM57 균주(=KCTC 22371 =AM 983543 =CCUG 60764)는 O. litoralis DSM $15406^T$ 및 O. donghaessis KCTC $12522^T$와 다른 특성을 나타내는 것으로 확인되어 Oceanisphaera의 새로운 종임을 제안하였다.

A taxonomic study was carried out to assess the phylogenetic characteristics of isolate JJM57 from marine red algae Laurencia sp. collected from intertidal zone in Jeju Island, South Korea. Comparative analysis of 16S rRNA gene sequence shows that this isolate belongs to the genus Oceanisphaera. It shows 98.02% and 97.7% sequence similarity with Oceanisphera litoralis DSM $15406^T$ and Oceanisphera donghaensis KCTC $12522^T$, respectively. Strain JJM57 is a Gram-negative, aerobic, moderately halophilic bacterium able to grow in different NaCl concentration ranges from 0.5 to 8.0% and at varying temperatures from 4 to $37^{\circ}C$. Sharing some of the physiological and biochemical properties with O. litoralis and O. donghaensis, JJM57 strain differs in the utilization of ethanol, proline, and alanine. The G+C contents of the strain JJM57 is 61.94 mol% and it is rich in $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2-OH, $C_{16:0}$, and $C_{18:1}$ ${\omega}7c$ fatty acids. The DNA-DNA relatedness data separates the strain JJM57 from other species such as O. litoralis and O. donghaensis. On the basis of these polyphasic evidences, present study proposed that strain JJM57 (=KCTC 22371 =AM983543 =CCUG 60764) represents a novel bacterial species of Oceanisphaera.

키워드

참고문헌

  1. Baumann, P. and Baumann, L. 1981. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. pp. 1302-1331. In Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H. (eds.), The Prokaryotes, vol. 1, Springer, Berlin, Germany.
  2. Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50, 1861-1868. https://doi.org/10.1099/00207713-50-5-1861
  3. Collins, M.D. 1985. Analysis of isoprenoid quinones. Methods Microbiol. 18, 329-366. https://doi.org/10.1016/S0580-9517(08)70480-X
  4. Erickson, K.L. 1983. Constituents of Laurencia. pp. 131-257. In Sheuer, P.J. (eds.), Marine Natural Products V, Academic Press, New York, N.Y., USA.
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376. https://doi.org/10.1007/BF01734359
  6. Fenical, W. and Norris, J.N. 1975. Chemotaxonomy in marine algae: chemical separation of some Laurencia species (Rhodophyta) from the Gulf of California. J. Phycol. 11, 104-108.
  7. Howard, B.M., Nonomura, A.M., and Fenical, W. 1980. Chemotaxonomy in marine algae: secondary metabolite synthesis by Laurencia in unialgal culture. Biochem. Syst. Ecol. 8, 329-336. https://doi.org/10.1016/0305-1978(80)90035-6
  8. Ivanova, E.P., Zhukova, N.V., Svetashev, V.I., Gorshkova, N.M., Kurilenko, V.V., Frolova, G.M., and Mikhailov, V.V. 2000. Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas-like Proteobacteria. Curr. Microbiol. 41, 341-345. https://doi.org/10.1007/s002840010146
  9. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. pp. 21-132. In Munro, H.N. (eds.), Mammalian Protein Metabolism, Academic Press, New York, N.Y., USA.
  10. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., and et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Sys. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  11. Masuda, M., Abe, T., Suzuki, T., and Suzuki, M. 1996. Morphological and chemotaxonomic studies on Laurencia composita and L. okamurae (Ceramiales, Rhodophyta). Phycologia 35, 550-562. https://doi.org/10.2216/i0031-8884-35-6-550.1
  12. Nam, K.W., Maggs, C.A., and Garbary, D.J. 1994. Resurrection of the genus Osmundea with an emendation of the generic delineation of Laurencia (Ceramiales, Rhodophyta). Phycologia 33, 384-395. https://doi.org/10.2216/i0031-8884-33-5-384.1
  13. Nam, K.W. and Saito, Y. 1995. Vegetative and reproductive anatomy of some Laurencia (Ceramiales, Rhodophyta) species with a description of L. maris-rubri sp. nov. from the Red Sea. Phycologia 34, 157-165. https://doi.org/10.2216/i0031-8884-34-2-157.1
  14. Nam, K.W. and Sohn, C.H. 1994. Laurencia kangjaewonii sp. nov. (Ceramiales, Rhodophyta) from Korea. Phycologia 33, 397-403. https://doi.org/10.2216/i0031-8884-33-6-397.1
  15. Norris, J.R., Ribbons, D.W., and Varma, A.K. (eds.) 1985. Methods in Microbiology, vol. 18, Academic Press, London.
  16. Park, S.J., Kang, C.H., Nam, Y.D., Bae, J.W., Park, Y.H., Quan, Z.X., Moon, D.S., Kim, H.J., Roh, D.H., and Rhee, S.K. 2006. Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. Int. J Syst. Evol. Microbiol. 56, 895-898. https://doi.org/10.1099/ijs.0.64116-0
  17. Romanenko, L.A., Schumann, P., Zhukova, N.V., Rohde, M., Mikhailov, V.V., and Stackebrandt, E. 2003. Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int. J. Syst. Evol. Microbiol. 53, 1885-1888. https://doi.org/10.1099/ijs.0.02774-0
  18. Saito, Y. 1967. Studies on Japanese species of Laurencia, with special reference to their comparative morphology. Mem. Fac. Fish Hokkaido Univ. 15, 1-81.
  19. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  20. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characteristics. pp. 607-654. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for General and Molecular Biology, American Society for Microbiology, Washington, DC, USA.
  21. Svetashev, V.I., Vysotskii, M.V., Ivanova, E.P., and Mikhailov, V.V. 1995. Cellular fatty acids of Alteromonas species. Syst. Appl. Microbiol. 18, 37-43. https://doi.org/10.1016/S0723-2020(11)80446-7
  22. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876