DOI QR코드

DOI QR Code

Inhibition of Candida albicans Biofilm Formation by Coptidis chinensis through Damaging the Integrity of Cell Membrane

세포막손상 유발로 인한 황련의 캔디다 바이오필름 형성 억제

  • Kim, Younhee (Department of Oriental Medicine, Semyung University)
  • Received : 2013.01.21
  • Accepted : 2013.02.06
  • Published : 2013.03.31

Abstract

Candida biofilms are organized microbial communities growing on the surfaces of host tissues or indwelling medical devices, and the biofilms show enhanced resistance against the conventional antifungal agents. The roots of Coptidis chinensis have been widely used for medicinal purposes in East Asia. The present study was aimed to assess the effect of C. chinensis aqueous extract upon preformed biofilms of 10 clinical Candida albicans isolates and the antifungal activities which contribute to inhibit the C. albicans biofilm formation. Its effect on preformed biofilms was judged using XTT [2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)] reduction assay, and metabolic activity of all tested strains was reduced significantly ($57.3{\pm}14.7%$) at $98{\mu}g/ml$ of the C. chinensis extract. The extract damaged the cell membrane of C. albicans which was analyzed by fluorescein diacetate and propidium iodide staining. The anticandidal activity was fungicidal, and the extract obstructed the adhesion of C. albicans biofilms to polystyrene surfaces, arrested C. albicans cells at $G_o/G_1$ as well, and reduced the growth of biofilms or budding yeasts finally. The data suggest that C. chinensis has multiple antifungal effects on target fungi resulting in preventing the formation of biofilms. Therefore, C. chinensis holds great promise for exploring antifungal agents from natural products in treating and eliminating biofilm-associated Candida infection.

Candida 바이오필름은 숙주조직이나 인체에 삽입된 의료기구의 표면에 자라는 진균의 군락으로 전통적인 항진균제에 대한 내성을 유발한다. 황련(Coptidis chinensis)의 뿌리는 극동지방에서 의료용 목적으로 널리 사용되어 왔다. 본 연구의 목적은 임상에서 분리한 C. albicans 바이오필름 형성 균주가 형성한 바이오필름에 대한 C. chinensis 수용성 추출물의 효과와 C. albicans 바이오필름 형성을 저해하는 데 기여하는 항진균활성을 평가하는 데 있다. 바이오필름에 대한 효과는 XTT [2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)] 환원분석법을 사용하였으며, 조사된 모든 균주에 대한 대사활성은 $98{\mu}g/ml$의 C. chinensis 수용성 추출물에 의해 현저하게 감소($57.3{\pm}14.7%$)되어 유의성 있는 항바이오필름 활성을 나타내었다. Fluorescein diacetate와 propidium iodide로 이중 염색한 결과 C. chinensis 추출물은 C. albicans의 세포막을 손상시켰다. C. chinensis 수용성 추출물은 살진균 활성을 나타냈고, C. albicans 바이오필름의 폴리스티렌 표면으로의 부착을 억제하였으며 C. albicans를 $G_o/G_1$기에 머무르게 하여 바이오필름이나 출아법에 의한 증식을 억제시켰다. 본 연구의 결과는 C. chinensis 추출물이 목표가 되는 C. albicans에 복합적으로 유해한 효과를 내어 궁극적으로는 C. albicans 바이오필름 형성을 억제함을 나타낸다. 따라서 C. chinensis 추출물은 바이오필름과 관련된 캔디다의 감염을 치료하고 제거하기 위한 천연물 기반항진균제 개발에 대한 높은 가능성을 가진다.

Keywords

References

  1. Baba, M., Osumi, M., Scott, S.V., Klionsky, D.J., and Ohsumi, Y. 1997. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol. 139, 1687-1695. https://doi.org/10.1083/jcb.139.7.1687
  2. Beggs, W.H. 1994. Physicochemical cell damage in relation to lethal amphotericin B action. Antimicrob. Agents Chemother. 38, 363-364. https://doi.org/10.1128/AAC.38.2.363
  3. Blankenship, J.R. and Mitchell, A.P. 2006. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9, 588-594. https://doi.org/10.1016/j.mib.2006.10.003
  4. Calderone, R.A. and Fonzi, W.A. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9, 327-335. https://doi.org/10.1016/S0966-842X(01)02094-7
  5. Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., and Ghannoum, M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183, 5385-5394. https://doi.org/10.1128/JB.183.18.5385-5394.2001
  6. CLSI. 2008a. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third edition; CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
  7. Cohen, B.E. 1998. Amphotericin B toxicity and lethality: a tale of two channels. Int. J. Pharmaceutics 162, 95-106. https://doi.org/10.1016/S0378-5173(97)00417-1
  8. Douglas, L.J. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11, 30-36. https://doi.org/10.1016/S0966-842X(02)00002-1
  9. Edidin, M. 1970. A rapid, quantitative fluorescence assay for cell damage by cytotoxic antibodies. J. Immunol. 104, 1303-1306.
  10. Eom, K.S., Hong, J.M., Youn, M.J., So, H.S., Park, R., Kim, J.M., and Kim, T.Y. 2008. Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol. Pharm. Bull. 31, 558-562. https://doi.org/10.1248/bpb.31.558
  11. Ghosh, A.K., Bhaktachoryya, F.K., and Ghosh, D.K. 1985. Amastigote inhibition and mode of action of berberine. Exp. Parasitol. 60, 404-413. https://doi.org/10.1016/0014-4894(85)90047-5
  12. Gow, N.A.R. and Gooday, G.W. 1982. Vacuolation, branch production and linear growth of germ tubes form Candida albicans. J. Gen. Microbiol. 128, 2195-2198.
  13. Guarrera, P.M. 2005. Traditional phytotherapy in central Italy. Fitotherapia 76, 1-25. https://doi.org/10.1016/j.fitote.2004.09.006
  14. Haynes, K. 2001. Virulence in Candida species. Trends Microbiol. 9, 591-596. https://doi.org/10.1016/S0966-842X(01)02237-5
  15. Henry-Stanley, M.J., Garni, R.M., and Wells, C.L. 2004. Adaptation of FUN-1 and Calcofluor white stains to assess the ability of viable and nonviable yeast to adhere to and be internalized by cultured mammalian cells. J. Microbiol. Methods 59, 289-292. https://doi.org/10.1016/j.mimet.2004.07.001
  16. Ikuta, A., Kobayashi, A., and Itokawa, H. 1984. Studies on the quantitative analysis of protoberberine alkaloids in Japanese, Chinese and other countries Coptis rhizomes by thin-layer chromatography-densitometry. Shoyakugaku zasshi 38, 279-282.
  17. Isola, M., Isola, R., Lantini, M.S., and Riva, A. 2009. The three-dimensional morphology of Candida albicans as seen by high-resolution scanning electron microscopy. J. Microbiol. 47, 260-264. https://doi.org/10.1007/s12275-008-0212-1
  18. Jones, K.H. and Senft, J.A. 1985. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 33, 77-79. https://doi.org/10.1177/33.1.2578146
  19. Kim, Y.M., Ha, Y.M., Jin, Y.C., Shi, L.Y., Lee, Y.S., Kim, H.J., Seo, H.G., Choi, J.S., Kim, Y.S., Kang, S.S., and et al. 2009. Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat. Food Chem. Toxicol. 47, 2097-2102. https://doi.org/10.1016/j.fct.2009.05.031
  20. Klepser, M.E., Ernst, E.J., Lewis, R.E., Ernst, M.E., and Pfaller, M.A. 1998. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob. Agents Chemother. 42, 1207-1212.
  21. Krishan, A. 1975. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66, 188-193. https://doi.org/10.1083/jcb.66.1.188
  22. Kuo, C.L., Chi, C.W., and Liu, T.Y. 2004. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 203, 127-137. https://doi.org/10.1016/j.canlet.2003.09.002
  23. Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949. https://doi.org/10.1016/S0092-8674(00)80358-X
  24. Mackenzie, D.W.R. 1962. Serum tube identification of Candida albicans. J. Clin. Pathol. 15, 563-565. https://doi.org/10.1136/jcp.15.6.563
  25. Mantena, S.K., Sharma, S.D., and Katiyar, S.K. 2006. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther. 5, 296-308. https://doi.org/10.1158/1535-7163.MCT-05-0448
  26. Mathur, A., Singh, R., Yousuf, S., Bhardwaj, A., Verma, S.K., Babu, P., Gupta, V., Prasad, G.B.K.S., and Dua, V.K. 2011. Antifungal activity of some plant extracts against clinical pathogens. Adv. Appl. Sci. Res. 2, 260-264.
  27. Millard, P.J., Roth, B.L., Thi, H-P., Yue, S.T., and Haugland, R.P. 1997. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeast. Appl. Environ. Microbiol. 63, 2897-2905.
  28. Odds, F.C., Gow, N.A., and Brown, A.J. 2001. Fungal virulence studies come of age. Genome Biol. 2, reviews 1009.1-1009.4.
  29. Oliver, B.G., Silver, P.M., Marie, C., Hoot, S.J., Leyde, S.E., and White, T.C. 2008. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology 154, 960-970. https://doi.org/10.1099/mic.0.2007/013805-0
  30. Park, S.J., Choi, S.J., Shin, W.S., Lee, H.M., Lee, K.S., and Lee, K.H. 2009. Relationship between biofilm formation ability and virulence of Candida albicans. J. Bacteriol. Virol. 39, 119-124. https://doi.org/10.4167/jbv.2009.39.2.119
  31. Perea, S. and Patterson, T.F. 2002. Antifungal resistance in pathogenic fungi. Clin. Infect. Dis. 35, 1073-1080. https://doi.org/10.1086/344058
  32. Pfaller, M.A. and Diekema, D.J. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133-163. https://doi.org/10.1128/CMR.00029-06
  33. Ramage, G., Martinez, J.P., and Lopez-Ribot, J.L. 2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6, 979-986. https://doi.org/10.1111/j.1567-1364.2006.00117.x
  34. Ramage, G., Vande-Walle, K., Wickes, B.L., and Lopez-Ribot, J.L. 2001. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 45, 2475 -2479. https://doi.org/10.1128/AAC.45.9.2475-2479.2001
  35. Rotman, B. and Papermaster, B.W. 1966. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA 55, 134-141. https://doi.org/10.1073/pnas.55.1.134
  36. Rukayadi, Y., Shim, J.-S., and Hwang, J.-K. 2008. Screening of Thai medicinal plants for anticandidal activity. Mycoses 51, 308-312. https://doi.org/10.1111/j.1439-0507.2008.01497.x
  37. Sabir, M. and Bhide, N. 1971. Study of some pharmacologic actions of berberine. Ind. J. Phys. Pharm. 15, 111-132.
  38. Talhouk, R.S., Karam, C., Fostok, S., El-Jouni, W., and Barbour, E.K. 2007. Anti-inflammatory bioactivities in plant extracts. J. Med. Food. 10, 1-10. https://doi.org/10.1089/jmf.2005.055
  39. Thompson, D.S., Carlisle, P.L., and Kadosh, D. 2011. Coevolution of morphology and virulence in Candida species. Eukaryot. Cell 10, 1173-1182. https://doi.org/10.1128/EC.05085-11
  40. Wiemken, A., Schellenberg, M., and Urech, K. 1979. Vacuoles: The sole compartment of digestive enzymes in yeast (Saccharomyces cerevisiae)? Arch. Microbiol. 123, 23-25. https://doi.org/10.1007/BF00403499

Cited by

  1. Inhibition of yeast Candida growth by protein antibiotic produced from Pseudomonas fluorescens BB2 vol.51, pp.4, 2015, https://doi.org/10.7845/kjm.2015.5055
  2. Antifungal Activity of Rheum undulatum on Candida albicans by the Changes in Membrane Permeability vol.50, pp.4, 2014, https://doi.org/10.7845/kjm.2014.4085