DOI QR코드

DOI QR Code

Analysis of Electromagnetic Wave Scattering Characteristics of Dielectric Barrier Discharge Plasma

유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석

  • Received : 2012.11.30
  • Accepted : 2013.02.21
  • Published : 2013.03.31

Abstract

This paper presented measurement results of scattering characteristics of dielectric barrier discharge (DBD) plasma at atmospheric pressure. In this paper, plasma actuator is fabricated by parallel connecting of basic configuration of DBD plasma actuator, then plasma could be generated by applying 14 kV, 4 kHz of high voltage generator. In order to measure the scattering characteristics of DBD plasma, in this paper, two horn antennas and vector network analyzer are used to compare the S-parameter. Because of the structure of fabricated plasma generator, different result is obtained as antenna polarization changes. When antenna polarization is parallel to electrodes of plasma generator, the scattered field is reduced by 2 dB in maximum. In addition, for parallel polarization case, PEC is set up behind the plasma generator to measure backward scattered field. When the observation angles are $40^{\circ}C$ and $60^{\circ}C$, the amount of reduced scattered field is 2 dB in maximum at 5 GHz.

본 논문은 대기압 환경에서 발생하는 유전체 장벽 방전(dielectric barrier discharge: DBD) 플라즈마의 전자파 산란 특성을 측정하였다. 본 논문에서는 기본적인 DBD 플라즈마 발생기 구조를 병렬로 연결하여 넓은 면적의 플라즈마 발생기를 제작하였고, 14 kV, 4 kHz의 고전압 발생장치를 이용해 플라즈마가 발생하는 것을 확인하였다. 두 개의 혼 안테나와 벡터 네트워크 분석기를 이용해 S-parameter의 비교를 통해 전자파 산란 특성을 측정하였다. 전방 산란의 경우 제작된 플라즈마 발생기의 구조적 특성으로 인해 안테나의 편파에 따라 다른 결과 값을 얻었다. 편파가 수평일 때 최대 2 dB의 산란파 감쇠 특성을 확인할 수 있었다. 또한, 편파가 수평일 경우, 플라즈마 발생기 뒤에 PEC를 설치한 후 후방 산란 특성을 측정하였다. 그 결과, 5 GHz에서 안테나 관찰 각도가 $40^{\circ}C$, $60^{\circ}C$일 때 최대 2 dB 산란파 감쇠 특성을 얻었다.

Keywords

References

  1. B. Chaudhury, S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods", Phys. Plasmas, vol. 13, pp. 123302-1-8, Dec. 2006. https://doi.org/10.1063/1.2397582
  2. L. Chaojui, H. Xiwei, and J. Zhonghe, "Interaction of electromagnetic waves with two-dimensional metal covered with radar absorbing material and plasma," Plasma Sci. Technol., vol. 10, no. 6, pp. 717-723, Dec. 2008. https://doi.org/10.1088/1009-0630/10/6/12
  3. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources", IEEE Trans. Plasma Sci., vol. 26, no. 6, pp. 1685-1694, Dec. 1998. https://doi.org/10.1109/27.747887
  4. D. K. Stalder, R. Vidmar, and D. Eckstrom, "Observations of strong microwave absorption in collisional plasmas with gradual density gradients", J. Appl. Phys., vol. 72, no. 11, pp. 5089-5094, Dec. 1992. https://doi.org/10.1063/1.352038
  5. A. Srivastava, G. Prasad, P. Atrey, and V. Kumar, "Attenuation of microwaves propagating through parallel-plate helium glow discharge at atmospheric pressure", J. Appl. Phys., vol. 103, pp. 033302-1-7, Feb. 2008. https://doi.org/10.1063/1.2838199
  6. S. Wolf, M. Arjomandi, "Investigation of the effect of dielectric barrier discharge plasma actuators on the radar cross section of an object", J. Appl. Phys. D: Appl. Phys., vol. 44, p. 315202-1-10, Jun. 2011. https://doi.org/10.1088/0022-3727/44/31/315202
  7. X. Lu, M. Laroussi, and V. Puech, "On atmospheric- pressure non-equilibrium plasma jets and plasma bullets", Plasma Sources Sci. Technol., vol. 21, pp. 1-17, Apr. 2012.
  8. N. Jiang, A. Ji, and Z. Cao, "Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism", J. Appl. Phys., vol. 106, pp. 013308-1-7, Mar. 2009. https://doi.org/10.1063/1.3159884
  9. E. Koretzky, S. Kuo, "Characterization of an atmospheric pressure plasma generated by a plasma torch array", Phys. of Plasmas, vol. 5, pp. 3774-3780, Oct. 1998. https://doi.org/10.1063/1.872741
  10. A. A. Fridman, L. A. Kennedy, Plasma Physics and Engineering: CRC, 2004.
  11. M. K. Howlader, Y. Yang, and J. R. Roth, "Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics", IEEE Trans. Plasma Sci., vol. 33, no. 3, pp. 1093-1099, Jun. 2005. https://doi.org/10.1109/TPS.2005.848623
  12. C. Larsson, M. Gustafsson, and G. Kristensson, "Wideband microwave measurements of the extinction cross section-Experimental techniques", Technical Report LUTEDX/(TEAT-7182)/1-2220 09.