DOI QR코드

DOI QR Code

Catalytic Nitrate Reduction in Water over Mesoporous Silica Supported Pd-Cu Catalysts

중형 기공성 실리카 담체에 담지된 Pd-Cu 촉매를 활용한 수중 질산성 질소 저감 반응

  • Kim, Min-Sung (Department of Chemical and Biological Engineering, Korea University) ;
  • Chung, Sang-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Myung Suk (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Dae-Won (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Kwan-Young (GREEN SCHOOL, Korea University)
  • 김민성 (고려대학교 화공생명공학과) ;
  • 정상호 (고려대학교 화공생명공학과) ;
  • 이명석 (고려대학교 화공생명공학과) ;
  • 이대원 (고려대학교 화공생명공학과) ;
  • 이관영 (고려대학교 그린스쿨 전문대학원)
  • Received : 2013.02.19
  • Accepted : 2013.03.08
  • Published : 2013.03.31

Abstract

In this study, we investigated the activity of Pd and Cu co-incorporated on mesoporous silica support such as MCM-41 and SBA-15 for catalytic nitrate reduction in water. In pure hydrogen flow, nitrate concentration was gradually decreased with the reaction time, but nitrogen selectivity was too low due to very high pH of reaction medium after the reaction. In order to acquire high nitrogen selectivity, we utilized carbon dioxide as a pH buffer, which resulted in higher nitrogen selectivity (about 40%). For the above reaction conditions, Pd-Cu/MCM-41 showed better performance than Pd-Cu/SBA-15. The physicochemical properties of both catalysts were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on the catalytic nitrate reduction by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction, X-ray photoelectron spectroscopy (XPS) techniques.

본 연구에서는 중형 기공성 실리카 담체인 MCM-41과 SBA-15를 활용하여 팔라듐과 구리를 담지한 후, 제조 촉매의 수중 질산성 질소 저감 반응 활성을 평가하였다. 순수 수소 공급 반응 조건에서, 질산성 질소의 농도는 반응 시간에 따라 점차 저감되었지만, 반응기 내부에 높게 형성된 pH로 인해 질소의 선택도가 매우 낮은 문제점이 발견되었다. 이를 해결하기 위해 이산화탄소를 수소와 함께 공급하여 pH의 안정화를 도모하였고, 질소 선택도를 40% 가량 증가시켰다. 상기 두 반응 조건에서 모두 Pd-Cu/MCM-41가 Pd-Cu/SBA-15보다 높은 활성을 나타냈다. 이와 같이 수중 질산성 질소 저감 반응의 활성에 차이를 보이는 두 촉매에 대하여, 질소 흡-탈착, XRD, $H_2$-TPR, XPS 등과 같은 특성 분석을 수행하여 제조 촉매의 구조와 물성이 반응활성에 미치는 영향을 검토해보았다.

Keywords

References

  1. Garron, A., Lazar, K., and Epron, F., "Effect of the Support on Tin Distribution in Pd-Sn/$Al_2O_3$ and Pd-Sn/$SiO_2$ Catalysts for Application in Water Denitration," Appl. Catal., B, 59, 57-69 (2005). https://doi.org/10.1016/j.apcatb.2005.01.002
  2. Lee, G.-H., and Lee, G., "Effects of Operating Parameters on the Removal Performance of Nitrate-Nitrogen by Electrodialysis," Clean Technol., 15(4), 280-286 (2009).
  3. Huang, C.-P., Wang, H.-W., and Chiu, P.-C., "Nitrate Reduction by Metallic Iron," Water Res., 32(8), 2257-2264 (1998). https://doi.org/10.1016/S0043-1354(97)00464-8
  4. Gavagnin, R., Biasetto, L., Pinna, F., and Strukul, G., "Nitrate Removal in Drinking Waters: the Effect of Tin Oxide in the Catalytic Hydrogenation of Nitrate by Pd/$SnO_2$ Catalysts," Appl. Catal., B, 38, 91-99 (2002). https://doi.org/10.1016/S0926-3373(02)00032-2
  5. Xu, Z., Chen, L., Shao, Y., Yin, D., and Zheng, S., "Catalytic Hydrogenation of Aqueous Nitrate over Pd-Cu/$ZrO_2$ Catalysts," Ind. Eng. Chem. Res., 48, 8356-8363 (2009). https://doi.org/10.1021/ie9005854
  6. Ryoo, W., "Reduction of Nitrate-Nitrogen by Zero-Valent Iron Nanoparticles Deposited on Aluminum via Electrophoretic Method," Clean Technol., 15(3), 194-201 (2009).
  7. Horold, S., Vorlop, K.-D., Tacke, T., and Sell, M., "Development of Catalysts for a Selective Nirate and Nitrite Removal from Drinking Water," Catal. Today, 17, 21-30 (1993). https://doi.org/10.1016/0920-5861(93)80004-K
  8. Barrabes, N., Just, J., Dafinov, A., Medina, F., Fierro, J. L. G., Sueiras, J. E., Salagre, P., and Cesteros, Y., "Catalytic Reduction of Nitrate on Pt-Cu and Pd-Cu on Active Carbon using Continuous Reactor. The Effect of Copper Nanoparticles," Appl. Catal., B, 62, 77-85 (2006). https://doi.org/10.1016/j.apcatb.2005.06.015
  9. Pintar, A. and Batista, J., "Catalytic Hydrogenation of Aqueous Nitrate Solutions in Fixed-bed Reactors," Catal. Today, 53, 35-50 (1999). https://doi.org/10.1016/S0920-5861(99)00101-7
  10. Vorlop, K.-D. and Tacke, T. "Erste Schritte auf dem Weg zur Edelmetall-katalysierten Nitrat- and Nitrit-entfernung aus Trinkwasser," Chem.-Ing.-Tech., 61(10), 836-837 (1989). https://doi.org/10.1002/cite.330611023
  11. Chen, Y.-X., Zhang, Y., and Chen, G.-H., "Approriate Conditions or Maximizing Catalytic Reduction Efficiency of Nitrate into Nitrogen Gas in Groundwater," Water Res., 37, 2489-2495 (2003). https://doi.org/10.1016/S0043-1354(03)00028-9
  12. Prüsse, U., and Vorlop, K.-D., "Supported Bimetallic Palladium Catalysts for Water-Phase Nitrate Reduction," J. Mol. Catal. A: Chem., 173, 313-328 (2001). https://doi.org/10.1016/S1381-1169(01)00156-X
  13. Mikami, I., Sakamoto, Y., Yoshinaga, Y., and Okuhara, T., "Kinetic and Adsorption Studies on the Hydrogenation of Nitrate and Nitrite in Water using Pd-Cu on Active Carbon Support," Appl. Catal., B, 44, 79-86 (2003). https://doi.org/10.1016/S0926-3373(03)00021-3
  14. Yoshinagana, Y., Akita, T., Mikami, I., and Okuhara, T., "Hydrogenation of Nitrate in Water to Nitrogen over Pd-Cu Supported on Active Carbon," J. Catal., 207, 37-45 (2002). https://doi.org/10.1006/jcat.2002.3529
  15. Rodriguez, R., Pfaff, C., Melo, L., and Betancourt, P., "Characterization and Catalytic Performance of a Bimetallic Pt-Sn/ HZSM-5 Catalyst used in Denitration of Drinking Water," Catal. Today, 107-108, 100-105 (2005).
  16. Marchesini, F.A., Irusta, S., Querini, C., and Miro, E., "Nitrate Hydrogenation over Pt,In/$Al_2O_3$ and Pt,In/$SiO_2$. Effect of Aqueous Media and Catalyst Surface Properties upon the Catalytic Activity," Catal. Commun., 9, 1021-1026 (2008). https://doi.org/10.1016/j.catcom.2007.09.037
  17. Dodouche, I., Barbosa, D. P., Rangel, M. D. C., and Epron, F., "Palladium-tin Catalysts on Conducting Polymers for Nitrate Removal," Appl. Catal., B, 93, 50-55 (2009). https://doi.org/10.1016/j.apcatb.2009.09.011
  18. Prusse, U., Hahnlein, M., Daum, J., and Vorlop, K.-D., "Improving the Catalytic Nitrate Reduction," Catal. Today, 55, 79-90 (2000). https://doi.org/10.1016/S0920-5861(99)00228-X
  19. Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R., and Werth, C. J., "Effects of Natural Water Ions and Humic Acid on Catalytic Nitrate Reduction Kinetics Using an Alumina Supported Pd-Cu Catalyst," Environ. Sci. Technol., 40, 3075-3081 (2006). https://doi.org/10.1021/es0525298
  20. Gasparovicova, D., Kralik, M., Hronec, M., Biffis, A., Zecca, M., and Corain, B., "Reduction of Nitrates Dissolve in Water over Palladium-Copper Catalysts Supported on a Strong Cationic Resin," J. Mol. Catal. A: Chem., 244, 285-266 (2006).
  21. Gasparovicova, D., Kralik, M., Hronec, M., Vallusova, Z., Vinek, H., and Corain, B., "Supported Pd-Cu Catalysts in the Water Phase Reduction of Nitrates: Functional Resin versus Alumina," J. Mol. Catal. A-Chem., 264, 93-102 (2007). https://doi.org/10.1016/j.molcata.2006.08.081
  22. Neyertz, C., Marchesini, F.A., Boix, A., Miro, E., and Querini, C. A., "Catalytic Reduction of Nitrate in Water: Promoted Palladium Catalysts Supported in Resin," Appl. Catal., A, 372, 40-47 (2010). https://doi.org/10.1016/j.apcata.2009.10.001
  23. Maia, M. P., Rodrigues, M. A., and Passos, F. B., "Nitrate Catalytic Reduction in Water Using Niobia Supported Palladium-Copper Catalysts," Catal. Today, 123, 171-176 (2007). https://doi.org/10.1016/j.cattod.2007.01.051
  24. Constantinou, C. L., Costa, C. N., and Efstathiou, A. M., "The Remarkable Effect of Oxygen on the $N_2$ Selectivity of Water Catalytic Denitrification by Hydrogen," Environ. Sci. Technol., 41, 950-956 (2007). https://doi.org/10.1021/es061392y
  25. Chung, S.-H., Park, Y.-M., Kim, M.-S, and Lee, K.-Y., "The Effect of Textural Properties on the Hydrogenation of Succinic Acid using Palladium Incorporated Mesoporous Supports," Catal. Today, 185, 205-210 (2012). https://doi.org/10.1016/j.cattod.2011.08.011
  26. Beck, J. S., Beck, VartUli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenkert, J. L., "A New Family of Mesoporous Molecular Sives Prepared with Liquid Cystal Templates," J. Am. Chem. Soc., 114, 10834-10843 (1992). https://doi.org/10.1021/ja00053a020
  27. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B .F., and Stucky, G. D., "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Sci., 279, 548-552 (1998). https://doi.org/10.1126/science.279.5350.548
  28. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T., "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure & Appl. Chem., 57(4), 603-619 (1985). https://doi.org/10.1351/pac198557040603
  29. Parida, K. M., and Rath, D., "Structural Properties and Catalytic Oxidation of Benzene to Phenol over CuO-Impregnated Mesoporous Silica," Appl. Catal., A, 321, 101-108 (2007). https://doi.org/10.1016/j.apcata.2007.01.054
  30. Soares, O. S. G. P., Orfao, J. J. M., and Pereira, M. F., "Nitrate Reduction in Water Catalyzed by Pd-Cu on Different Supports," Desalination, 279, 367-374 (2011). https://doi.org/10.1016/j.desal.2011.06.037
  31. Xiaoyuan, J., Cuanglie, L., Renxian, Z., Jianxin, M., Yu, C., and Xiaoming, Z., "Studies of Pore Structure, Temperature-programmed Reduction Performance, and Micro-Structure of CuO/$CeO_2$ Catalysts," Appl. Surf. Sci., 173, 208-220 (2001). https://doi.org/10.1016/S0169-4332(00)00897-7
  32. Cho, K. H., Park, J.-H., and Shin, C.-H., "Low Temperature CO Oxidation over Cu-Mn Mixed Oxides," Clean Technol., 16(2), 132-139 (2010).
  33. Zhu, H., Dong, L., and Chen, Y., "Effect of Titania Structure on the Properties of Its Supported Copper Oxide Catalysts," J. Colloid Interface Sci., 357, 497-503 (2011). https://doi.org/10.1016/j.jcis.2011.02.012
  34. Wada, K., Hirata, T., Hosokawa, S., Iwamoto, S., and Inoue, M., "Effect of Supports on Pd-Cu Bimetallic Catalysts for Nitrate and Nitrite Reduction in Water," Catal. Today, 185, 81-87 (2012). https://doi.org/10.1016/j.cattod.2011.07.021
  35. Garron, A., and Epron, F., "Use of Formic Acid as Reducing Agent for Application in Catalytic Reduction of Nitrate in Water," Water Res., 39, 3073-3081 (2005). https://doi.org/10.1016/j.watres.2005.05.012
  36. D'Arino, M., Pinna, F., and Strukul, G., "Nitrate and Nitrite Hydrogenation with Pd and Pt/$SnO_2$ Catalysts: The Effect of the Support Porosity and the Role of Carbon Dioxide in the Control of Selectivity," Appl. Catal., B, 53, 161-168 (2004). https://doi.org/10.1016/j.apcatb.2004.05.015
  37. Epron, F., Gauthard, F., and Barbier, J., "Catalytic Reduction of Nitrate in Water on a Monometallic Pd/$CeO_2$ Catalyst," J. Catal., 206, 363-367 (2002). https://doi.org/10.1006/jcat.2001.3498
  38. Gao, W., Guan, N., Chen, J., Guan, X., Jin, R., Zeng, H., Liu, Z., and Zhang, F., "Titania Supported Pd-Cu Bimetallic Catalyst for the Reduction of Nitrate in Drinking Water," Appl. Catal., B, 46, 341-351 (2003). https://doi.org/10.1016/S0926-3373(03)00226-1
  39. Sa, J., Barrabes, N., Kleymenov, E., Lin, C., Fottinger, K., Safonova, O. V., Szlachetko, J., Bokhoven,, J. A. v., Nachtegaal, M., Urakawa, A., Crespo, G. A., and Rupprechter, G., "The Oxidation State of Copper in Bimetallic (Pt-Cu, Pd-Cu) Catalysts During Water Denitration," Catal. Sci. Technol., 2, 794-799 (2012). https://doi.org/10.1039/c2cy00461e

Cited by

  1. Nitrate reduction by micro-scale zero-valent iron particles under oxic condition vol.21, pp.6, 2017, https://doi.org/10.1007/s12205-017-1701-8
  2. Adsorption of Low-level CO2using Activated Carbon Pellet with Glycine Metal Salt Impregnation vol.30, pp.1, 2014, https://doi.org/10.5572/KOSAE.2014.30.1.068
  3. Catalytic Nitrate Reduction in Water over Nanosized TiO2Supported Pd-Cu Catalysts vol.20, pp.1, 2014, https://doi.org/10.7464/ksct.2014.20.1.028