DOI QR코드

DOI QR Code

기상흡착 방법에 의한 저등급 석탄의 안정화 연구

The Stabilization Study of Low-rank Coal by Vapor Adsorption

  • 전동혁 (한국에너지기술연구원 청정연료연구단) ;
  • 박인수 (한국에너지기술연구원 청정연료연구단) ;
  • 조완택 (한국에너지기술연구원 청정연료연구단) ;
  • 조은미 (한국에너지기술연구원 청정연료연구단) ;
  • 김상도 (한국에너지기술연구원 청정연료연구단) ;
  • 최호경 (한국에너지기술연구원 청정연료연구단) ;
  • 유지호 (한국에너지기술연구원 청정연료연구단) ;
  • 임정환 (한국에너지기술연구원 청정연료연구단) ;
  • 임영준 (한국에너지기술연구원 청정연료연구단) ;
  • 이시훈 (한국에너지기술연구원 청정연료연구단)
  • Chun, Dong Hyuk (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Park, In Soo (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Cho, Wan Taek (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Jo, Eun Mi (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Kim, Sang Do (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Choi, Ho Kyung (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Yoo, Jiho (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Lim, Jeong Hwan (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Rhim, Young Joon (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Lee, Sihyun (Clean Fuel Department, Korea Institute of Energy Research)
  • 투고 : 2013.02.13
  • 심사 : 2013.03.06
  • 발행 : 2013.03.31

초록

저등급 석탄의 건조 후 안정화하기 위한 방법으로 탄화수소의 기상흡착에 대한 연구를 수행하였다. 밀폐된 5 L의 데시케이터 용기에 건조 석탄과 안정화제를 넣고 주어진 온도에서 일정 시간 동안 유지시킨 후 석탄의 표면 특성과 자연발화 경향을 살펴보았다. 기상흡착 후 건조 석탄의 표면적은 미세기공을 중심으로 감소하였다. 흡착시간과 온도가 증가할수록 안정화 석탄의 자연발화 경향은 감소하는 것으로 나타났다. 안정화제의 종류에 따른 자연발화 경향은 큰 차이를 보이지 않았다. 분석 결과에 의하면 석탄의 0.5 wt% 이하인 소량 흡착으로 안정화 효과를 나타내는 것이 확인되었으며, 저온에서 기상흡착에 의한 안정화 현상은 저분자량의 탄화수소 흡착에 의한 것으로 나타났다.

Vapor adsorption of hydrocarbon has been studied for stabilization after drying low-rank coal. The surface characteristics and the propensity of spontaneous combustion were observed for stabilized coal which was maintained with hydrocarbons as stabilizer at several conditions of residence time and temperature. Surface area of micropores in coal mainly decreased after vapor adsorption. As residence time and temperature of adsorption process increased, the propensity of spontaneous combustion decreased. The type of hydrocarbons did not effect on the propensity of spontaneous combustion. As the analysis results of this work, the amount of hydrocarbon adsorbates required to stabilize dried coal was 0.5 wt% or less of coal, and the stabilizing effect was induced by adsorption of low-molecular-weight hydrocarbons.

키워드

참고문헌

  1. Mujumdar, A. S., and Jangam, S. V., "Drying of Low rank Coal," M3TC Technical Report, January, 2011.
  2. Fei, Y., Aziz, A. A., Nasir, S., Jackson, W. R., Marshall, M., Hulston, J., and Chaffee, A. L., "The Spontaneous Combustion Behavior of Some Low rank Coals and a Range of Dried Products," Fuel, 88, 1650-1655 (2009). https://doi.org/10.1016/j.fuel.2009.03.017
  3. Unal, S., Wood, D. G., and Harris, I. J., "Effect of Drying Methods on the Low Temperature Reactivity of Victorian Brown Coal to Oxygen," Fuel, 71, 183-192 (1992). https://doi.org/10.1016/0016-2361(92)90007-B
  4. Umar, D. F., Daulay, B., Usui, H., Deguchi, T., and Sugita, S., "Characterization of Upgraded Brown Coal," Coal Prep., 25, 31-45 (2005). https://doi.org/10.1080/07349340590927350
  5. Japan Coal Energy Center; Kobe Steel, Ltd., "Low-rank Coal Upgrading Technology (UBC process)," Clean Coal Technologies in Japan, 2006, pp. 77.
  6. Clark, K., "Commercial Scale Low rank Coal Upgrading using the BCB Process," 2nd Coaltrans Upgrading Coal Forum, Presentation (2010).
  7. Wang, C., and Firor, R., "Simulated Distillation System for ASTM D2887, Based on the Agilent 6890N GC," Agilent Technologies, 5989-2726EN (2005).
  8. Trumbore, C. D., "Estimates of Air Emissions from Asphalt Storage Tanks and Truck Loading," Environ. Prog., 18, 250-259 (1999). https://doi.org/10.1002/ep.670180411
  9. Lim, C. S., Manan, Z. A., and Sarmidi, M. R., "Simulation Modeling of the Phase Behavior of Palm Oil-Supercritical Carbon Dioxide," J. Am. Oil Chemists' Soc., 80, 1147-1156 (2003). https://doi.org/10.1007/s11746-003-0834-6
  10. http://www.cheric.org/research/kdb
  11. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T., "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure & Appl. Chem., 57, 603-619 (1985). https://doi.org/10.1351/pac198557040603
  12. Xuyao, Q., Wang, D., Milke, J. A., and Zhong, X., "Crossing Point Temperature of Coal," Min. Sci. Technol., 21, 255 (2011).
  13. Kadioglu, Y., and Varamaz, M., "The Effect of Moisture Content and Air-drying on Spontaneous Combustion Characteristics of Two Turkish Lignites," Fuel, 82, 1685 (2003). https://doi.org/10.1016/S0016-2361(02)00402-7
  14. Cai, Y., Liu, D., Pan, Z., Yao, Y., Li, J., and Qiu, Y., "Pore Structure and Its Impact on $CH_4$ Adsorption Capacity and Flow Capability of Bituminous and Subbituminous Coals from Northeast China," Fuel, 103, 258-168 (2013). https://doi.org/10.1016/j.fuel.2012.06.055
  15. Tompsett, G. A., Krogh, L., Griffin, D. W., and Conner, W. C., "Hysteresis and Scanning Behavior of Mesoporous Molecular Sieves," Langmuir, 21, 8214-8225 (2005). https://doi.org/10.1021/la050068y
  16. Park, J. N., Kim, R. H., Woo, H. C., and Chun, B. S., "Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide," Clean Technol., 18, 191-199 (2012). https://doi.org/10.7464/ksct.2012.18.2.191
  17. Tahmasebi, A., Yu, J., Han, Y., Yin, F., Bhattacharya, S., and Stokie, D., "Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air," Energy Fuels, 26, 3651-3660 (2012). https://doi.org/10.1021/ef300559b

피인용 문헌

  1. Surface Characteristics and Spontaneous Combustibility of Coal Treated with Non-polar Solvent under Room Temperature vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.609
  2. Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.321
  3. Experimental study on moisture re-adsorption characteristics of dried coal pp.1939-2702, 2018, https://doi.org/10.1080/19392699.2018.1531852