DOI QR코드

DOI QR Code

Effect of Particle Size and Structure of TiO2 Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell

TiO2 나노 입자의 크기와 결정 구조가 염료감응형 태양전지의 광전 효율에 미치는 영향

  • Lee, Hyeonju (Department of Chemistry, Yeungnam University) ;
  • Park, No-Kuk (School of Chemical Engineering, Yeungnam University) ;
  • Lee, Tae Jin (School of Chemical Engineering, Yeungnam University) ;
  • Han, Gi Bo (Plant Engineering Division, Institute for Advanced Engineering) ;
  • Kang, Misook (Department of Chemistry, Yeungnam University)
  • Received : 2012.11.16
  • Accepted : 2012.12.05
  • Published : 2013.03.31

Abstract

A comparison of photo-efficiency on dye-sensitized solar cells (DSCs) assembled by using $TiO_2$ materials with different structures and crystallite sizes were investigated in this study. The size and structure of $TiO_2$ have been controlled by pHs and calcination temperatures using solvothermal and sol-gel methods, respectively. Six types of $TiO_2$ samples are obtained; 8.9, 12.8, and 20.2 nm sized $TiO_2$ particles, and the other types using sol-gel method were anatase-rutile mixtures on the structure. The highest photo-efficiency which is remarkable result reached to 8.6% over DSC assembled by anatase $TiO_2$ with 20.2 nm particle size.

본 연구는 염료감응형 태양전지의 구성요소 중 핵심 소재로 주목받고 있는 티타니아($TiO_2$) 나노입자의 크기와 결정구조에 따른 광전 효율을 비교하고자 하였다. 나노입자의 크기는 용매열법(solvothermal method)을 이용하여 출발 용액의 pH를 조절하고 결정구조의 차이는 솔-젤법에 의해 얻어진 무정형의 티타니아를 온도를 달리하여 소성함으로써 조절되었다. 그 결과, 용매법으로는 8.9, 12.8 그리고 20.2 nm의 크기를 가지는 세 종류의 아나타제 티타니아를, 솔-젤법으로는 세 종류의 아나타제-루타일(anatase-rutile) 혼합결정구조를 가지는 티타니아를 얻었다. 여섯 종류의 샘플 중 20.2 nm 크기의 아나타제 결정구조의 티타니아를 광 전극으로 사용한 염료감응형 태양전지 단위 셀에서 8.6%로 가장 좋은 광전 효율을 얻었다.

Keywords

References

  1. Chen, H. W., Hsu, C. Y., Chen, J. G., Lee, K. M., Wang, C. C., Huang, K. C., and Ho, K. C., "Plastic Dye-sensitized Photo-supercapacitor Using Electrophoretic Deposition and Compression Methods," J. Power Sources, 195, 6225-6231 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.009
  2. Xu, H., Tao, X., Wang, D. T., Zheng, Y. Z., and Chen, J. F., "Enhanced Efficiency in Dye-sensitized Solar Cells Based on $TiO_2$ Nanocrystal/nanotube Double-layered Films," Electrochimica Acta, 55, 2280-2285 (2010). https://doi.org/10.1016/j.electacta.2009.11.067
  3. Jørgensen, M., Norrman, K., and Krebs, F. C., "Stability/Degradation of Polymer Solar Cells," Sol. Energy Mater. Sol. Cells, 92, 686-714 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
  4. Lenzman, F. O., and Kroon, J. M., " Recent Advances in Dyesensitized Solar Cells," Adv. Opt., 2007, 1-10 (2007).
  5. Hinsch, A., Behrens, S., Berginc, M., Bonnemann, H., Brandt, H., Drewitz, A., Einsele, F., Fassler, D., Gerhard, D., Gores, H., Haag, R., Herzig, T., Himmler, S., Khelashvili, G., Koch, D., Nazmutdinova, G., Opara-Krasovec, U., Putyra, P., Rau, U., Sastrawan, R., Schauer, T., Schreiner, C., Sensfuss, S., Siegers, C., Skupien, K., Wachter, P., Walter, J., Wasserscheid, P., Wurfel, U., and Zistler, M., "Material Development for Dye Solar Modules: Results from an Integrated Approach," Prog. Photovoltaics, 16, 489-501 (2008). https://doi.org/10.1002/pip.832
  6. Grätzel, M., "Dye-sensitized Solar Cells," J. Photochem. Photobiol. C, 4, 145-153 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  7. Sae-Kung, C., Vijitjunya, P., Keawket, S., Thanachayanont, C., Heawchin, A., and Pungwiwu, N., "Influence of Cholicacid Derivatives as Co-absorbent for Reducing Charge Recombination to Improve Dye-sensitized Solar Cell Performance," J. Micro. Soc. Thai., 24, 140-144 (2010).
  8. Zhang, Y., Wu, L., Xie, E., Duan, H., Han, W., and Zhao, J., "A Simple Method to Prepare Uniform-size Nanoparticle $TiO_2$ Electrodes for Dye-sensitized Solar Cells," J. Power Sources, 189, 1256-1263 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.023
  9. Wei, T. C., Wan, C. C., and Wang, Y. Y., "Preparation and Characterization of a Micro-porous Polymer Electrolyte with Cross-linking Network Structure for Dye-sensitized Solar Cell," Sol. Energy Mater. Sol. Cells, 91, 1892-1897 (2007). https://doi.org/10.1016/j.solmat.2007.07.005
  10. Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y., "Photocatalytic Hydrogenation of $CH_3CCH$ with $H_2O$ on Small-particle $TiO_2$: Size Quantization Effects and Reaction Intermediates," J. Phys. Chem., 91, 4305-4310 (1987). https://doi.org/10.1021/j100300a021
  11. Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., Brudvig, G. W., and Batista, V. S., "Synergistic Effect between Anatase and Rutile $TiO_2$ Nanoparticles in Dye-sensitized Solar Cells," Dalton Trans., 45, 10078-10085 (2009).
  12. Kang, S. H., Kang, M. S., Kim, H. S., Kim, J. Y., Chung, Y. H., William, H., Smyrl, C., and Sung, Y. E., "Columnar Rutile $TiO_2$ Based Dye-sensitized Solar Cells by Radio-frequency Magnetron Sputtering," J. Power Sources, 184, 331- 335 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.089
  13. Caplovicova, M., Billik, P., Caplovic, L'., Brezova, V., Turani, T., Plesch, G., and Fejdi, P., "On the True Morphology of Highly Photoactive Anatase $TiO_2$ Nanocrystals," Appl. Catal. B: Environ., 117-118, 224-235 (2012). https://doi.org/10.1016/j.apcatb.2012.01.010
  14. Kheamrutai, T., Pichet, L., and Boonlaer, N., "Phase Characterization of $TiO_2$ Powder by XRD and TEM," Nat. Sci., 42, 357-361 (2008).
  15. Rehani, B. R., Joshi, P. B., lad, K. N., and Pratap, A., "Crystallite Size Estimation of Elemental and Composite Silver Nano-powder Using XRD Principles," Indian J. Pure Ap. Phy., 44, 157-161 (2006).
  16. Tayade, R. J., Surolia, P. K., Kulkarni, R. G., and Jasra, R. V., "Photocatalytic Degradation of Dyes and Organic Contaminants in Water Using Nanocrystalline Anatase and Rutile $TiO_2$," Sci. Technol. Adv. Mat., 8, 455-462 (2007). https://doi.org/10.1016/j.stam.2007.05.006
  17. Lai, M. H., Tubtimtae, A., Lee, M. W., and Wang, G. J., "ZnO-Nanorod Dye-sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer," Int. J. Photoenergy, 2010, 1-5 (2010).
  18. Wu, S., Han, H., Tai, Q., Zhang, J., Xu, S., Zhou, C., Yang, Y., Hu, H., Chen, B., Sebo, B., and Zhao, X. Z., "Enhancement in Dye-sensitized Solar Cells Based on MgO-coated $TiO_2$ Electrodes by Reactive DC Magnetrons Puttering," Nanotechnol. 19, 1-6 (2008).
  19. Lee, K. M., Suryanarayanan, V., Huang, J. H., Justin Thomas, K. R., Jiann T. L., and Ho, K. C., "Enhancing the Performance of Dye-sensitized Solar Cells Based on an Organic Dye by Incorporating $TiO_2$ Nanotube in a $TiO_2$ Nanoparticle Film," Electrochim. Aata, 54, 4123-4130 (2009). https://doi.org/10.1016/j.electacta.2009.02.052

Cited by

  1. Preparationand Characterization of Rutile-anatase Hybrid TiO2Thin Film by Hydrothermal Synthesis vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.306
  2. Performance Analysis of the TiO2 Dye-Sensitized Solar Cell according to Seasonal Changes vol.23, pp.3, 2014, https://doi.org/10.12791/KSBEC.2014.23.3.221
  3. 주형합성을 통한 메조포러스 TiO2 제조 및 실리카 메조포어 내부에서의 TiO2 상전이 거동 변화 vol.56, pp.2, 2013, https://doi.org/10.9713/kcer.2018.56.2.261