DOI QR코드

DOI QR Code

Fabrication of Porcelains Having Improved Thermal Shock Resistance by a Lithium Solution Infiltration Method

리튬용액침투법에 의한 내열충격성이 향상된 세라믹 제조

  • Received : 2013.01.07
  • Accepted : 2013.03.06
  • Published : 2013.03.31

Abstract

Porcelain with high thermal shock resistance was successfully fabricated by a lithium solution infiltration method with a lithium hydroxide solution. Lithium hydroxide solutions having various lithium concentrations were infiltrated into pre-sintered porcelain bodies. The porcelain sample infiltrated by the 9 wt% lithium solution and heat treated at $1250^{\circ}C$ for 1 h showed a low thermal expansion coefficient of $1.0{\times}10^{-6}/^{\circ}C$ with excellent thermal shock resistance. The highly thermally resistant porcelain had a well-developed ${\beta}$-spodumene phase with the general phases observed in porcelain. Furthermore, the porcelain showed a denser structure of $2.41g/cm^3$ sintering density and excellent whiteness in comparison with commercial thermally resistible porcelains. The lithium hydroxide in the samples readily reacted with moisture, and liquid phase reactants were formed during the fabrication process. In the case of an excess amount of lithium in the sample body, the lithium reactants were forced to the surface and re-crystallized at the surface, leaving large pores beneath the surface. These phenomena resulted in an irregular structure in the surface area and led to cracking in samples subjected to a thermal shock test.

Keywords

References

  1. L. M. Sheppard, "Ceramics for Controlling Diesel Emissions," Am. Ceram. Soc. Bull., 72 28-33 (1993).
  2. B. Karmakar, P. Kundu, S. Jana, and R. N. Dwivedi, "Crystallization Kinetics and Mechanism of Low-Expansion Lithium Aluminosilicate Glass-Ceramics by Diatometry," J. Am. Ceram. Soc., 85 2572-74 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00498.x
  3. F. C. Serbena, V. Oliveira, O. Peitl, H. Pinto, R. Muccillo, and E. D. Zanotto, "Internal Residual Stresses in Sintered and Commercial Low Expansion $Li_2O-Al_2O_3-SiO_2$ Glass- Ceramics," J. Am. Ceram. Soc., 94 [1] 206-14 (2011).
  4. M. H. Lin and M. C. Wang, "Crystallization Behavior of $\beta$-Spodumene in the Calcinations of $Li_2O-Al_2O_3-SiO_2-ZrO_2$ Gels," J. Mater. Sci., 30 2716-21 (1995). https://doi.org/10.1007/BF00362157
  5. S. Knickerbocker, M. R. Tuzzolo, and S. Lawhorne, "Sinterable $\beta$-Spodumene Glasses-Ceramics," J. Am. Ceram. Soc., 72 1873-79 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05994.x
  6. E. J. Smoke, "Ceramics Compositions Having Negative Linear Thermal Expansion," J. Am. Ceram. Soc., 34 87-90 (1951). https://doi.org/10.1111/j.1151-2916.1951.tb13491.x
  7. C. E. Brackbill, H. A. Mckinstry, and F. A. Hummel, "Thermal Expansion of Some Glasses in the System $Li_2O-Al_2O_3-SiO_2$," J. Am. Ceram. Soc., 34 107-79 (1951). https://doi.org/10.1111/j.1151-2916.1951.tb11616.x
  8. M. J. Buerger, "Stuffed Derivatives of Silica Structures," Am. Mineral., 39 600-14 (1989).
  9. H. C. Lee, "Synthesis of Low Thermal Expansion Ceramics Prepared from Pyrophyllite(in Korean)," pp. 1-63, M. S. Thesis, Mokpo Natl. Univ., Muan, 2011.
  10. J. K. Kim, S. Y. Yang, and C. J. Jung, "Fabrication of Low TEC Machinable Ceramics Using Domestic Pyrophyllite(in Korean)," J. Kor. Ceram. Soc., 28 [9] 730-39 (1991).
  11. H. S. Park, K. S. Cho, and C. S. Mun, "The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals (III) Sintering Characteristics of Eucryptite and Spodumene(in Korean)," J. Kor. Ceram. Soc., 32 [2] 171-82 (1995).
  12. R. Satyabrata and G. M. Muchow "High-Quartz, Solid Solution Phases from Thermally Crystallized Glasses of Compositions $(Li_2O,\;MgO){\cdot}Al_2O_3{\cdot}nSiO_2$," J. Am. Ceram. Soc., 51 678-82 (1968). https://doi.org/10.1111/j.1151-2916.1968.tb15927.x
  13. L. Xia, G. Wen, L. Song, and X. Wang, "Sol-Gel Synthesis and Crystallization Behavior of $\beta$-Spodumene," J. Sol-Gel Sci. Technol., 52 134-39 (2009). https://doi.org/10.1007/s10971-009-2001-7
  14. M. K. Naskar and M. Chatterjee, "A Novel Process for the Synthesis of Lithium Aluminum Silicate Powders from Rice Husk Ash and Other Water-Based Precursor Materials," Mater. Lett., 59 998-1003 (2005). https://doi.org/10.1016/j.matlet.2004.06.075
  15. S. Mandal, S. Chakrabarti, and S. Ghatak, "Preparation and Characterization of a Powder Precursor, Consisting of Oxides of Li-Al-Si in the Form of Hydroxyhydrogel for Synthesis of $\beta$-Spodumene Ceramics," Ceram. Int., 30 357- 67 (2004). https://doi.org/10.1016/S0272-8842(03)00108-1
  16. W. Ostertag, G. R. Fischer, and J. P. Williams, "Thermal Expansion of Synthetic $\beta$-Spodumene and $\alpha$-Spodumene- Silica Solid Solution," J. Am. Ceram. Soc., 51 651-54 (1968). https://doi.org/10.1111/j.1151-2916.1968.tb12638.x
  17. H. T. Kim and E. S. Lee, "Preparation of the LAS Ceramics for Heat Resistance Using Metal Alkoxide (I)(in Korean)," J. Kor. Ceram, Soc., 30 [12] 987-92 (1993).
  18. D. U. Tulyaganov, S. Agathopoulos, H. R. Fernandes, and J. M. F. Ferreira, "Synthesis of Lithium Aluminosilicate Glass and Glass-Ceramics from Spodumene Material," Ceram. Int., 30 1023-30 (2004). https://doi.org/10.1016/j.ceramint.2003.10.022
  19. S. Wu, Y. Liu, L. He, and F. Wang, "Preparation of $\beta$-Spodumene Based Glass Ceramic Powders by Polyacrylamide Gel Process," Mater. Lett., 58 2772-75 (2004). https://doi.org/10.1016/j.matlet.2004.04.017
  20. K. O. Kim, "High-Intensity Heat Resistance Porcelain(in Korean)," Kor. Pat. 100924213 (2009).
  21. D. L. Beaycganomp and M. Khajehpour, "The Effect of Lithium Ions on the Hydrophobic Effect : Does Lithium Affect Hydrophobicity Differently than Other Ions?," Biophys. Chem., 163-164 35-43 (2012). https://doi.org/10.1016/j.bpc.2012.02.003
  22. G. I. Szasz, K. Heinzinger, and G. Palinkas, "The Structure of the Hydration Shell of the Lithium Ion," Chem. Phys. Lett., 78 194-96 (1981). https://doi.org/10.1016/0009-2614(81)85582-0

Cited by

  1. Low-Temperature Synthesis of Cordierite Using Magnesite vol.608, pp.1662-9795, 2014, https://doi.org/10.4028/www.scientific.net/KEM.608.122