DOI QR코드

DOI QR Code

Gold Nanonetworks on a Flexible Polyimide Substrate

유연성 폴리이미드 기판 위의 금 나노망

  • Kim, Hyonwoong (Department of Chemical Engineering, Dankook University) ;
  • Baik, Kwang Hyeon (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Jihyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Jang, Soohwan (Department of Chemical Engineering, Dankook University)
  • 김현웅 (단국대학교 화학공학과) ;
  • 백광현 (홍익대학교 재료공학부) ;
  • 김지현 (고려대학교 화공생명공학과) ;
  • 장수환 (단국대학교 화학공학과)
  • Received : 2012.12.13
  • Accepted : 2013.01.28
  • Published : 2013.04.01

Abstract

By using a simple solution based method, gold nanonetworks which are randomly distributed gold nanowires arrays were synthesized. After APTMS (3-aminopropyltrimethoxysilane) treatment, adhesion of gold nanonetworks with 10-15 nm diameters to the substrate was greatly enhanced. Density of gold nanonetworks increased with number of coating, and uniformly coated nanonetworks were connected physically and electrically. Gold nanonetworks deposited on the flexible polyimide substrate shows constant electrical conductivity for physical bending of the substrate.

불규칙한 나노선의 모임인 금 나노망이 간단한 수용액 합성법을 통하여 합성되었다. 직경이 10~15 nm 크기의 금나노망은 APTMS (3-aminopropyltrimethoxysilane) 처리를 통하여 기판과의 접착력을 크게 향상시킬 수 있었다. 코팅횟수의 조절을 통하여 기판 위 금 나노망의 밀도 조절이 가능하였으며, 균일하게 코팅된 나노망은 물리적 및 전기적으로 서로 연결된 구조를 보였다. 유연성 PI(polyimide) 기판에 증착된 금 나노망은 구부리기 전, 후 및 구부렸다 편 상태에서 동일한 전기 전도성을 나타내었다.

Keywords

References

  1. Lu, X. and Xia, Y., "Electronic Materials: Buckling Down for Flexible Electronics," Nat. Nanotechnol., 1, 163-164(2006). https://doi.org/10.1038/nnano.2006.157
  2. Sun, Y. and Rogers, J. A., "Inorganic Semiconductors for Flexible Electronics," Adv. Mater., 19(15), 1897-1916(2007). https://doi.org/10.1002/adma.200602223
  3. Kim, D., Ahn, J., Choi, W. M., Kim, H., Kim, T., Song, J., Huang, Y. Y., Liu, Z., Lu, C. and Rogers, J. A., "Stretchable and Foldable Silicon Integrated Circuits," Science, 320, 507-511(2008). https://doi.org/10.1126/science.1154367
  4. Shin, G. and Ha, J. S., "Fabrication of Flexible Passive Matrix by Using Silicon Nano-ribbon," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49(3), 338-341(2011). https://doi.org/10.9713/kcer.2011.49.3.338
  5. Hahn, Y., "Zinc Oxide Nanostructures and Their Applications," Korean J. Chem. Eng., 29(9), 1797-1813(2011).
  6. Viventi, J., Kim, D., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y., Avrin, A. E., Tiruvadi, V. R., Hwang, S., Vanleer, A. C., Wulsin, D. F., Davis, K., Gelber, C. E., Palmer, L., Spiegel, J. V. D., Wu, J., Xiao, J., Huang, Y., Conteras, D., Rogers, J. A. and Litt, B., Wu, Y.-F., Kapolnek, D., Ibbetson, J. P., Parikh, P., Keller, B. P. and Mishra, U. K., "Flexible, Foldable, Actively Multiplexed, High-density Electrode Array for Mapping Brain Activity in vivo," Nat. Neurosci., 14, 1599-1605(2011). https://doi.org/10.1038/nn.2973
  7. Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards, M., Hoon, J., Simons, J. F., Marran, D., Myers, J. W., Davdson, J. F., Branting, A., Nobile, J. R., Puc, B. P., Light, D., Clark, T. A., Huber, M., Branciforte, J. T., Stoner, I. B., Cawley, S. E., Lyons, M., Fu, Y., Homer, N., Sedova, M., Miao, X., Reed, B., Sabina, J., Feierstein, E., Schorn, M., Alanjary, M., Dimalanta, E., Dressman, D., Kasinskas, R., Sokolsky, T., Fidanza, J. A., Namsarev, E., Mckernan, K. J., Williams, A., Roth, G. T. and Bustillo, J., "An Integrated Semiconductor Device Enabling Nonoptical Genome Sequencing," Nat., 475, 348-352(2011). https://doi.org/10.1038/nature10242
  8. Venkatesan, B. M. and Bashir, R., "Nanopore Sensors for Nucleic Acid Analysis," Nat. Nanotechnol., 6, 615-624(2011). https://doi.org/10.1038/nnano.2011.129
  9. Zhou, L., Wanga, A., Wu, S., Sun, J. and Park, S., "All-organic Active Matrix Flexible Display," Appl. Phys. Lett., 88, 083502 (2006). https://doi.org/10.1063/1.2178213
  10. Kim, Y. S., "Microheater-intergrated Single Gas Sensor Array Chip Fabricated on Flexible Polyimide Substrate," Sens. Actuators B-Chem., 114, 410-417(2006). https://doi.org/10.1016/j.snb.2005.06.016
  11. Engel, J., Chen, J. and Liu, C., "Development of Polyimide Flexible Tactile Sensor Skin," J. Micromech. Microeng., 13, 359-366 (2003). https://doi.org/10.1088/0960-1317/13/3/302
  12. Nakamura, Y., Suzuki, Y. and Watanabe, Y., "Effect of Oxygen Plasma Etching on Adhesion Between Polyimide Films and Metal," Thin Solid Films, 290-291, 367-369(1996). https://doi.org/10.1016/S0040-6090(96)09017-7
  13. Lommatzshch, U., Pasedag, D., Baalmann, A., Ellinghorst, G. and Wagner, H., "Atmospheric Pressure Plasma jet Treatment of Polyethylene Surfaces for Adhesion Improvement," Plasma Process Polym., 4, S1041-S1045(2007). https://doi.org/10.1002/ppap.200732402
  14. Yun, H. K., Cho, K., Kim, J. K., Park, C. E., Sim, S. M., Oh, S. Y. and Park, J. M., "Adhesion Improvement of Epoxy Resin/ Polyimide Joints by Amine Treatment of Polyimide Surface," Polymer, 38(4), 827-834(1997). https://doi.org/10.1016/S0032-3861(96)00592-7
  15. Seol, Y. G., Lee, N.-E., Park, S. H. and Bae, J. Y., "Improvement of Mechanical and Electrical Stabilities of Flexible Organic Thin Film Transistor by Using Adhesive Organic Interlayer," Org. Electron., 9, 413-417(2008). https://doi.org/10.1016/j.orgel.2008.02.003
  16. Kim, D. and Rogers, J. A., "Stretchable Electronics : Materials Strategies and Devices," Adv. Mater., 20, 4887-4892(2008). https://doi.org/10.1002/adma.200801788
  17. Shin, G., Bae, M. Y., Lee, H. J., Hong, S. K., Yoon, C. H., Zi, G., Rogers, J. A. and Ha, J. S., "$SnO_2$ Nanowire Logic Devices on Deformable Nonplanar Substrates," ACS nano, 5(12), 10009-10016 (2011). https://doi.org/10.1021/nn203790a
  18. Sato, T., Brown, D. and Johnson, B. F. G., "Nucleation and Growth of Nano-Gold Colloidal Lattices", Chem. Commun., 1007-1008(1997).
  19. Daniel, M. and Astruc, D., "Gold Nanoparticles : Assembly, Supramolecular Chemistry, Quantum-size-related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology," Chem. Rev., 104, 293-346(2004). https://doi.org/10.1021/cr030698+
  20. Pei, L., Mori, K. and Adachi, M., "Formation Process of Two-dimensional Networked Gold Nanowires by Citrate Reduction of $AuCl_4^-$ and the Shape Stabilization," Langmuir, 20(18), 7837-7843(2004). https://doi.org/10.1021/la049262v
  21. Vasilev, K., Zhu, T., Wilms, M., Gillies, G., Lieberwirth, I., Mittler, S., Knoll, W. and Kreiter, M., "Simple, One-step Synthesis of Gold Nanowires in Aqueous Solution," Langmuir, 21(26), 12399-12403(2005). https://doi.org/10.1021/la052354f
  22. O'mahony, T., Owens, V. P., Murrihy, J. P., Guihen, E., Holmes, J. D. and Glennon, J. D., "Alkylthiol Gold Nanoparticles in Opentubular Capillary Electrochromatography," J. Chromatogr. A, 1004, 181-193(2003). https://doi.org/10.1016/S0021-9673(03)00856-2
  23. Azulai, D., Belenkova, T., Gilon, H., Barkay, Z. and Markovich, G., "Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates," Nano Lett., 9(12), 4246-4249(2009). https://doi.org/10.1021/nl902458j

Cited by

  1. CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.565