DOI QR코드

DOI QR Code

A Study of Complex Distillation Arrangements Using Dividing Wall Columns for Improved Depropanizing, Debutanizing and Deisobutanizing Fractionation of NGL

천연가스액 중 프로판, 부탄, 이소-부탄의 개선된 분리회수를 위한 분리벽형 증류탑을 이용한 복합 증류배열에 관한 연구

  • 구웬롱 (영남대학교 화학공학부) ;
  • 장성근 (영남대학교 화학공학부) ;
  • 이문용 (영남대학교 화학공학부)
  • Received : 2012.11.12
  • Accepted : 2012.12.15
  • Published : 2013.04.01

Abstract

The depropanizing, debutanizing and deisobutanizing fractionation steps of processing natural gas liquids were improved through studying complex distillation arrangements, including the double dividing wall column arrangement (DDWC), the sequence including a dividing wall column (DWC) and a bottom DWC (BDWC), and the sequence including a DWC and a BDWC with top vapor recompression heat pump. These arrangements offer benefits by decreasing reboiler and condenser power consumption. Reducing the number of columns and their diameters can potentially reduce construction costs. The result also showed that operating cost could be reduced most significantly through novel combinations of internal and external heat integration: bottom dividing wall columns employing a top vapor recompression heat pump.

천연가스액 회수공정 중 프로판, 부탄, 이소 부탄의 분별증류 과정의 에너지 효율을 향상시키는 방안으로 일반 분리벽형 증류탑 이중배열(DDWC), 일반 분리벽형 증류탑(DWC)과 탑저 분리벽형 증류탑(BDWC)의 순차배열 및 일반 분리벽형 증류탑에 탑정증기 재압축 히트펌프가 탑저 분리벽형 증류탑에 조합된 복합배열을 제안하고 그 성능을 분석하였다. 그 결과 이러한 배열들이 일반 증류배열과 비교하여 재비기와 응축기에서의 에너지 소모를 상당량 줄여주는 효과를 가지는 것을 확인하였으며 소요되는 증류탑의 수와 직경이 줄어들게 되어 투자비용이 대폭 절감될 수 있음을 알 수 있었다. 또한 탑저 분리벽형 증류탑에 탑정증기 재압축 히트펌프를 조합하는 내부 및 외부 열통합 조합을 통하여 가장 많은 운전비용 절감을 달성할 수 있음을 확인하였다.

Keywords

References

  1. Kidnay, A. J. and Parrish W. R., "Fundamentals of Natural Gas Processing," Taylor and Francis: Baca Raton (2006).
  2. Elliot, D., Qualls, W. R., Huang, S. R. and Chen, J. J., "Benefit of Integrating NGL Extraction and LNG Liquefaction Technology," AIChE Spring National Meeting, 5th topical conference on Natural Gas Utilization (TI) Session 16c-Gas.(2005).
  3. Mak, J., "Configurations and Methods for Improved NGL Recovery," U.S. Patent No. 7,051,552(2006).
  4. Michael, A. S., Douglas, G. S., James, M. H., Steven, P. R., Mohammed, S. S. and Dennis, E. O., "Reduce Costs with Dividing Wall Columns," CEP., 98(5), 64-71(2002).
  5. Knapp, J. P. and Doherty, M. F., "Thermal Integration of Homogeneous Azeotropic Distillation Sequences," AIChE J., 36(7), 969-984(1990). https://doi.org/10.1002/aic.690360702
  6. Malinenand, I. and Tanskanen, J., "Thermally Coupled Side-column Configurations Enabling Distillation Boundary Crossing. 1. An overview and a solving procedure," Ind. Eng. Chem Res., 48(13), 6387-6404(2009). https://doi.org/10.1021/ie800817n
  7. Asprion, N. and Kaibel, G., "Dividing Wall Columns: Fundamentals and Recent Advances," Chem. Eng. Process., 49(2), 139-146 (2010). https://doi.org/10.1016/j.cep.2010.01.013
  8. Halvorsen, I. J. and Skogestad, S., "Shortcut Analysis of Optimal Operation of Petlyuk Distillation," Ind. Eng. Chem. Res., 43(14), 3994-3999(2004). https://doi.org/10.1021/ie034177o
  9. Long, N. V. D., Lee, S. H. and Lee, M. Y., "Design and Optimization of a Dividing Wall Column for Debottlenecking of the Acetic Acid Purification Process," Chem. Eng. Process. 49(8), 825-835(2010). https://doi.org/10.1016/j.cep.2010.06.008
  10. Long, N. V. D. and Lee, M. Y., "Optimal Retrofit Design of Extractive Distillation to Energy Efficient Thermally Coupled Distillation Scheme," AIChE J. In Press., DOI: 10.1002/aic.13906 (2012).
  11. Long, N. V. D. and Lee, M. Y., "Design and Optimization of a Dividing Wall Column Structure by Factorial Design," Korean J. Chem. Eng., 29(5), 567-573(2012). https://doi.org/10.1007/s11814-011-0223-1
  12. Lee, S. H., Shamsuzzoha, M., Han, M., Kim, Y. H. and Lee, M. Y., "Study of the Structural Characteristics of a Divided Wall Column Using the Sloppy Distillation Arrangement," Korean J. Chem. Eng., 28(2), 348-356(2011). https://doi.org/10.1007/s11814-010-0364-7
  13. Lee, S. G., Long, N. V. D. and Lee, M. Y., "Design and Optimization of Natural Gas Liquefaction and Recovery Processes for Offshore Floating Liquid Natural Gas Plants," Ind. Eng. Chem. Res., 51(30), 10021-10030(2012). https://doi.org/10.1021/ie2029283
  14. Minh, L. Q., Long, N. V. D. and Lee, M. Y., "Energy Efficiency Improvement of Dimethyl Ether Purification Process Utilizing Dividing Wall Columns," Korean J. Chem. Eng. 29(11), 1500-1507(2012). https://doi.org/10.1007/s11814-012-0048-6
  15. Long, N. V. D. and Lee, M. Y., "Improvement of the Deethanizing and Depropanizing Fractionation Steps in NGL Recovery Process Using Dividing Wall Column," J. Chem. Eng. Japan., 45(4), 285-294(2012). https://doi.org/10.1252/jcej.11we187
  16. Long, N. V. D. and Lee, M. Y., "Improved Energy Efficiency in Debottlenecking Using a Fully Thermally Coupled Distillation Column," Asia-Pac. J. Chem. Eng., 6(3), 338-348(2011). https://doi.org/10.1002/apj.577
  17. Long, N. V. D. and Lee, M. Y., "Dividing Wall Column Structure Design Using Response Surface Methodology," Com. Chem. Eng., 37(10), 119-124(2012). https://doi.org/10.1016/j.compchemeng.2011.07.006
  18. Long, N. V. D. and Lee, M. Y., "Design and Optimization of Heat Integrated Dividing Wall Columns for Improved Debutanizing and Deisobutanizing Fractionation of NGL," Accepted by Korean J. Chem. Eng. (2012).
  19. Fidkowski, Z. and Krolikowski, L., "Thermally Coupled System of Distillation Columns: Optimization Procedure," AIChE J., 32(4), 537-546(1986). https://doi.org/10.1002/aic.690320403
  20. Fidkowski, Z. and Krolikowski, L., "Minimum Energy Requirements of Thermally Coupled Distillation Systems," AIChE J., 33(4), 643-654(1987). https://doi.org/10.1002/aic.690330412
  21. Poth, N., Brusis. D. and Stichlmair, J., "Minimaler Energiebedarf Von Trennwandkolonnen," Chem. Ing. Tech., 76(12), 1811-1814(2004). https://doi.org/10.1002/cite.200403438
  22. Amminudin, K. A., Smith, R., Thong, D. Y. C. and Towler, G. P., "Design and Optimization of Fully Thermally Coupled Distillation Columns: Part 1: Preliminary Design and Optimization Methodology," Trans. IChemE., 79(7), 701-715(2001). https://doi.org/10.1205/026387601753192028
  23. Dejanovic, I., Lj. Matijasevic, and Z. Olujic., "Dividing Wall Column-a Breakthrough Towards Sustainable Distilling," Chem. Eng. Process., 49(6), 559-580(2010). https://doi.org/10.1016/j.cep.2010.04.001
  24. Long, N. V. D. and Lee, M. Y., "Improvement of Natural Gas Liquid Recovery Energy Efficiency through Thermally Coupled Distillation Arrangements," Asia Pac. J. Chem. Eng., 7(S1), S71-S77(2012). https://doi.org/10.1002/apj.643
  25. Manley, D. B., "Deethanizer/Depropanizer Sequences with Thermal and Thermo-Mechanical Coupling and Component Distribution," U.S. patent No. 5,673,571(1997).
  26. Amminudin, K. A. and R., Smith., "Design and Optimization of Fully Thermally Coupled Distillation Columns. Part 2: Application of Dividing Wall Columns in Retrofit," Trans. IChemE., 79(7), 716-724(2001). https://doi.org/10.1205/026387601753192037
  27. Manley, D. B., "Multiple Effect and Distributive Separation of Isobutane and Normal Butane," U.S. patent No. 8,806,339(1998).
  28. Aspen Technology., "Aspen HYSYS Thermodynamics COM Interface," Version number V7.1, January(2009).
  29. Diez, E., Langston, P., Ovejero, G. and Dolores Romero, M., "Economic Feasibility of Heat Pumps in Distillation to Reduce Energy Use," App. Ther. Eng., 29(5-6), 1216-1223(2009). https://doi.org/10.1016/j.applthermaleng.2008.06.013

Cited by

  1. Sequential simulation of packed distillation columns using rate-based model vol.31, pp.6, 2014, https://doi.org/10.1007/s11814-014-0039-x