DOI QR코드

DOI QR Code

Development of the Dynamic Model for the Metabolic Network of Clostridium acetobutylicum

Clostridium acetobutylicum의 대사망의 동적모델 개발

  • Kim, Woohyun ;
  • Eom, Moon-Ho (Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation) ;
  • Lee, Sang-Hyun (Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation) ;
  • Choi, Jin-Dal-Rae (Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation) ;
  • Park, Sunwon (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 김우현 (한국에너지기술연구원 신재생에너지본부 수소연료전지연구단) ;
  • 엄문호 (GS칼텍스(주) 기술연구소 바이오연료팀) ;
  • 이상현 (GS칼텍스(주) 기술연구소 바이오연료팀) ;
  • 최진달래 (GS칼텍스(주) 기술연구소 바이오연료팀) ;
  • 박선원 (한국과학기술원 생명화학공학과)
  • Received : 2012.11.13
  • Accepted : 2012.12.17
  • Published : 2013.04.01

Abstract

To produce biobutanol, fermentation processes using clostridia that mainly produce acetone, butanol and ethanol are used. In this work, a dynamic model describing the metabolic reactions in an acetone-butanol-ethanol (ABE)-producing clostridium, Clostridium acetobutylicum ATCC824, was proposed. To estimate the 58 kinetic parameters of the metabolic network model with experimental data obtained from a batch fermentor, we used an efficient optimization method combining a genetic algorithm and the Levenberg-Marquardt method because of the complexity of the metabolism of the clostridium. For the verification of the determined parameters, the developed metabolic model was evaluated by experiments where genetically modified clostridium was used and the initial concentration of glucose was changed. Consequently, we found that the developed kinetic model for the metabolic network was considered to describe the dynamic metabolic state of the clostridium sufficiently. Thus, this dynamic model for the metabolic reactions will contribute to designing the clostridium as well as the fermentor for higher productivity.

부탄올을 생산하는 발효반응기에서는 아세톤, 부탄올 그리고 에탄올을 주로 생산하는 Clostridium acetobutylicum이 사용된다. 본 연구에서는 이 미생물을 이용한 발효공정의 개발을 위하여, Clostridium acetobutylicum ATCC824의 대사망의 동적 모델이 제안되었다. 많은 효소기반의 대사반응들로 구성된 대사망의 복잡성과 대사반응속도식의 비선형적 특성 때문에, 유전 알고리듬과 Levenberg-Marquardt 알고리듬이 결합된 효율적인 최적화 기법을 이용하여 회분식 발효반응기의 실험 결과값으로 58개의 반응속도상수들을 결정하였다. 그리고 이 반응속도상수 결정의 정확도를 제고하기 위하여, 유전자 조작을 통해 특정 대사경로를 차단한 미생물을 이용했을 때의 실험과 초기 글루코스의 농도를 다르게 한 실험들을 수행하여 개발된 대사망의 동적모델을 분석하였다. 결과적으로, 본 연구를 통해서 개발된 대사망 모델의 정확도를 확인하였고, 이를 활용하여 발효반응공정의 생산성 향상을 위한 적절한 클로스트리듐의 개발과 발효반응기의 최적화를 위한 연구에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Lee, T. M., Ishizaki, A., Yoshino, S. and Furukawa, K., "Production of Acetone, Butanol and Ethanol from Palm Oil Mill Effluent Using C. Saccharoperbutylacetonicum N1-4," Biotechnol. Lett., 17, 649-654(1995). https://doi.org/10.1007/BF00129394
  2. Lopez-Contreras, A. M., Claassen, P. A. M., Mooibroek, H. and De Vos, W. M., "Utilisation of Saccharides in Extruded Domestic Organic Waste by Clostridium Acetobutylicum ATCC 824 for Production of Acetone," Butanol and Ethanol. Appl. Microbiol. Biotechnol., 54, 162-167(2000). https://doi.org/10.1007/s002530000374
  3. Madihah, M. S., Ariff, A. B., Khalil, M. S., Suraini, A. A. and Karim, M. I. A., "Anaerobic Fermentation of Gelatinized Sago Starch-derived Sugars to Acetone-1-butanolethanol Solvent by Clostridium Acetobutylicum," Folia Microbiol, 46, 197-204(2001). https://doi.org/10.1007/BF02818533
  4. Qureshi, N., Meagher, M. M., Huang, J. and Hutkins, R. W., "Acetone Butanol Ethanol (ABE) Recovery by Pervaporation Using Silicalite-silicone Composite Membrane from Fed-batch Reactor of Clostridium Acetobutylicum," J. Membr. Sci., 187, 93-102(2001). https://doi.org/10.1016/S0376-7388(00)00667-0
  5. Stephanopoulos, G. and Vallino, J. J., "Network Rigidity and Metabolic Engineering in Metabolite Overproduction," Science, 252, 1675-1681(1991). https://doi.org/10.1126/science.1904627
  6. Shinto, H., Tashiro, Y., Yamashita, M., Kobayashi G., Sekiguchi, T., Hanai, T., Kuriya, Y., Okamoto, M. and Sonomoto, K., "Kinetic Modeling and Sensitivity Analysis of Acetone-butanol-ethanol Production," J. Biotechnol., 131, 45-56(2007). https://doi.org/10.1016/j.jbiotec.2007.05.005
  7. Shinto, H., Tashiro, Y., Kobayashi, G., Sekiguchi, T., Hanai, T., Kuriya, Y., Okamoto, M. and Sonomoto, K., "Kinetic Study of Substrate Dependency for Higher Butanol Production in Acetone-butanol-ethanol Fermentation," Process Biochem., 43, 1452-1461(2008). https://doi.org/10.1016/j.procbio.2008.06.003
  8. Durre, P., "Fermentative Butanol Production Bulk Chemical and Biofuel," Ann. NY Acad. Sci., 22, 337-343(2008).
  9. Green, E. M., "Fermentative Production of 1-butanol-the Industrial Perspective," Curr. Opin. Biotechnol., 22, 337-343(2011). https://doi.org/10.1016/j.copbio.2011.02.004
  10. Jones, D. T. and Woods, D. R., "Acetone-1-butanol Fermentation Revisited," Microbiological Reviews, 50, 484-524(1986).
  11. Milne, C. B., Eddy, J. A., Raju, R., Ardekani, S., Kim, P-.J., Senger, R. S., Jin, Y-.S., Blaschek, H. P. and Price, N. D., "Metabolic Network Reconstruction and Genomescale Model of Butanolproducing Strain Clostridium Beijerinckii NCIMB 8052," BMC Systems Biology, 5, 130(2011). https://doi.org/10.1186/1752-0509-5-130
  12. Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. and Minton, N. P., "The ClosTron: A Universal Gene Knock-out System for the Genus Clostridium," Journal of Microbial Methods, 70, 452-464(2007). https://doi.org/10.1016/j.mimet.2007.05.021
  13. Desai, R. P., Harris, L. M., Welker, N. E. and Papoutsaki, E. T., "Metabolic Flus Analysis Elucidates the Importance of the Acidformation Pathways in Regulating Solvent Production by Clostridium Acetobutylycum," Metabolic Engineering, 26, 1206-1213(1999).
  14. Lee, J., Yun, H., Feist, A. M., Palsson, B. and Lee, S. Y., "Genomescale and in Silico Analysis of the Clostridium Acetobutylicum ATCC 824 Metabolic Network," Applied Microbial Biotechnology, 80, 849-862(2008). https://doi.org/10.1007/s00253-008-1654-4
  15. Borden, J. R. and Papoutsakis, E. T., "Dynamics of Genome-library Enrichment and Identification of Solvent Tolerance Genes For Clostridium Acetobutylicum," Appl. Environ. Microbiol., 73, 3061-3068(2007). https://doi.org/10.1128/AEM.02296-06
  16. Lee, J., Jang, Y., Choi, S. J., Im, J. A., Song, H., Cho, J. H., Seung, D. Y., Papoutsakis, E. T., Bennette, G. N. and Lee, S. Y., "Metabolic Engineering of Clostridium Acetobutylicum ATCC 824 for Isopropanol-butanol-ethanol Fermentation," Appl. Environ. Microbiol., 78, 1416-1423(2012). https://doi.org/10.1128/AEM.06382-11
  17. Burdette, D. and Zeikus, J. G., "Purification of Acetaldehyde Dehydrogenase and Alcohol Dehydrogenases from Thermoanaerobacter Ethanolicus 39E and Characterization of the Secondary-alcohol Dehydrogenase ($2^{\circ}$ Adh) as a Bifunctional Alcohol Dehydrogenase- acetyl-CoA Reductive Thioesterase," Biochemistry Journal, 302, 163-170(1994). https://doi.org/10.1042/bj3020163
  18. Palosaari, N. R. and Rogers, P., "Purification and Properties of the Inducible Coenzyme A-linked Butyraldehyde Dehydrogenase from Clostridium Acetobutylicum," J. Bacteriol., 170, 2971-2976(1988). https://doi.org/10.1128/jb.170.7.2971-2976.1988
  19. Lutke-Eversloh, T. and Bahl, H., "Metabolic Engineering of Clostridium Acetobutylicum: Recent Advances to Improve Butanol Production," Current Opinion in Biotechnology (2011).
  20. Kim, W., Yun, C., Kim, Y., Park, J., Park, S., Jung, K. T., Lee, Y. H. and Kim, S., "Modeling of a Tubular Reactor Producing Epichlorohydrin with Consideration of Reaction Kinetics and Deactivation of Titanium Silicate-1 Catalyst," Ind. Eng. Chem. Res., 50, 1187-1195(2011). https://doi.org/10.1021/ie101071m
  21. Goldberg, D. E., "Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edition, Addison-Wesley Professional," Reading, Massachusetts, U.S.(1989).
  22. Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan, U.S.(1975).