DOI QR코드

DOI QR Code

Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst

설폰화 활성탄 촉매를 이용한 솔비톨의 아이소소바이드로의 탈수반응

  • Kang, Hyo Yoon (Biorefinery Research group/Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Dong Won (Biorefinery Research group/Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Young Kyu (Biorefinery Research group/Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Jin-Soo (Biorefinery Research group/Korea Research Institute of Chemical Technology (KRICT)) ;
  • Chang, Jong-San (Biorefinery Research group/Korea Research Institute of Chemical Technology (KRICT))
  • 강효윤 (한국화학연구원 바이오리파이너리 연구그룹) ;
  • 황동원 (한국화학연구원 바이오리파이너리 연구그룹) ;
  • 황영규 (한국화학연구원 바이오리파이너리 연구그룹) ;
  • 황진수 (한국화학연구원 바이오리파이너리 연구그룹) ;
  • 장종산 (한국화학연구원 바이오리파이너리 연구그룹)
  • Received : 2012.10.26
  • Accepted : 2012.11.28
  • Published : 2013.04.01

Abstract

A sulfonated activated carbon (AC-$SO_3H$) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-$SO_3H$ at 423.15 K. Although AC-$SO_3H$ possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-$SO_3H$, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosobide from sorbitol. The reactive distillation process using AC-$SO_3H$, the turnover number of AC-$SO_3H$ was 4 times higher than the conventional two-step process using sulfuric acid.

불균일계 고체산 촉매인 설폰기(Sulfonyl Group) 함유 활성탄 촉매를 이용하여 솔비톨(Sorbitol)의 아이소소바이드로(Isosorbide)의 탈수반응을 수행하였다. 설폰화 반응(Sulfonation)에 의해 제조된 설폰화 활성탄 물질에 대해 대표적인 상업용 산촉매인 설폰화 지르코니아(Sulfated $ZrO_2$)와 산성 이온교환수지 Amberlyst-36과 솔비톨 탈수반응의 촉매활성을 비교하였다. 설폰화 활성탄 촉매를 이용하여 423.15 K에서 솔비톨의 탈수 반응 결과, 100% 솔비톨 전환율과 52% 아이소소바이드 선택도를 얻었다. 설폰화 활성탄은 낮은 설폰기 농도(0.5 mmol/g)에도 불구하고 높은 표면적으로 인해 423.15 K에서 Amberlyst-36과 유사한 솔비톨 탈수 반응 특성을 보이며, Amberlyst-36 대비 473.15 K 이상 고온에서도 안정한 특성을 보이는 고체산 촉매로 판단되었다. 또한, 솔비톨 탈수반응 결과를 바탕으로 반응과 생성물의 분리를 동시에 할 수 있는 반응증류 공정에 설폰화 활성탄 촉매를 적용한 결과, 기존 황산 공정 대비 2배 이상 빠른 반응시간에 단위 설폰산 농도 기준으로 4배 이상 높은 아이소소바이드 수율을 얻을 수 있었다.

Keywords

References

  1. Chheda, J. N., Huber, G. W. and Dumesic, J. A., "Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals," Angew. Chem.-Int. Edit., 46, 7164-7183(2007). https://doi.org/10.1002/anie.200604274
  2. Hubber, G. W. and Corma, A., "Synergies Between Bio- and Oil Refineries for the Production of Fuels from Biomass," Angew. Chem.-Int. Edit., 46, 7184-7201(2007). https://doi.org/10.1002/anie.200604504
  3. Demirbas, A., "Biorefineries: Current Activities and Future Developments," Energy Convers. Manage., 50, 2782-2801(2009). https://doi.org/10.1016/j.enconman.2009.06.035
  4. Pacific Morthwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL), Report: Top Value Added Chemicals from Biomass. Volume: Results of Screening for Potential Candidates from Sugars and Synthesis Gas(2004).
  5. Liu, A. G. and Luckett, C., "Sorbitol Conversion Process," US Patent 7,982,059(2008).
  6. Gohil, R. M., "Properties and Strain Hardening Character of Polyethylene Terephthalate Containing Isosorbide," Polym. Eng. Sci., 49, 544-553(2009). https://doi.org/10.1002/pen.20840
  7. Bhatia, K. K., "Continuous Process for the Manufacture of Anhydro Sugar Alcohols and Reactor Useful Therefor," US patent 6,407,266 B2(2002).
  8. Fleche, G. and Huchette, M., "Isosorbide. Preparation, Properties and Chemistry," Starch, 38, 26-30(1986). https://doi.org/10.1002/star.19860380107
  9. Hartmann, L. A., "Separation of Hexitan," US patent 3,484,459 (1969).
  10. Holladay, J. E., Hu, J., Wang, Y., Werpy, Y. A. and Zhang, X., "Method of Forming a Dianhydrosugar Alcohol," US patent 7,649,099 A1(2007).
  11. Fuertes, P., "Method for Preparing a Composition Containing at Least One Internal Dehydration Product for a Hydrogenated Sugar," US patent 8008477 A1(2008).
  12. Kurszewska, M., Skorupowa, E., Madaj, J., Konitz, A., Wojnowski, W. and Wisniewski, A., "The Solvent-free Thermal Dehydration of Hexitols on Zeolites," Carbohydr. Res., 337, 1261-1268 (2009).
  13. Moore, K. M. and Sanborn, A. J., "Process for the Production of Anhydrosugar Alcohols," US patent 6,849,748 B2(2005).
  14. Khan, N. A., Mishra, D. K., Hwang, J.-S., Kwak, Y.-W. and Jhung, S. H., "Liquid-phase Dehydration of Sorbitol Under Microwave Irradiation in the Presence of Acidic Resin Catalysts," Res. Chem. Intermed., 37, 1231-1238(2011). https://doi.org/10.1007/s11164-011-0389-5
  15. Gu, M., Yu, D. H., Zhang, H., Sun, P. and Huang, H., "Metal (IV) Phosphates as Solid Catalysts for Selective Dehydration of Sorbitol to Isosorbide," Catal. Lett., 133, 214-220(2009). https://doi.org/10.1007/s10562-009-0142-5
  16. Tang, Z. C., Yu, D. H., Sun, P., Li, H. and Huang, H., "Phosphoric Acid Modified $NB_2O_5$: A Selective and Reusable Catalyst for Dehydration of Sorbitol to Isosorbide," Bull. Korean Chem. Soc., 12, 3679-3683(2010). https://doi.org/10.5012/bkcs.2010.31.12.3679
  17. Xia, J. J., Yu, D., Hu, Y., Zou, B., Sun, P., Li, H. and Huang, H., "Sulfated Copper Oxide: An Efficient Catalyst for Dehydration of Sorbitol to Isosorbide," Catal. Commun., 12, 544-547(2011). https://doi.org/10.1016/j.catcom.2010.12.002
  18. Sun, P., Yu, D. H., Hu, Y., Tang, Z. C., Xia, J. J., Li, H. and Huang, H., "$H_3PW_{12}O_{40}/SiO_2$ for Sorbitol Dehydration to Isosorbide: High Efficient and Reusable Solid Acid Catalyst," Korean J. Chem. Eng., 28, 99-105(2011). https://doi.org/10.1007/s11814-010-0324-2
  19. Yamaguchi, A., Hiyoshi, N., Sato, O. and Shirai, M., "Sorbitol Dehydration in High Temperature Liquid Water," Green Chem., 13, 873-881(2011). https://doi.org/10.1039/c0gc00426j
  20. Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J. N., Hayashi, S. and Domen, K., "A Carbon Material as a Strong Protonic Acid," Angew. Chem. Int. Ed., 43, 2955-2958(2004). https://doi.org/10.1002/anie.200453947
  21. Xunhua, M., Edgar, L., Changqing, L., Yijun, L. and James, G. G., "A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis," Catal. Lett., 123, 1-6 (2008). https://doi.org/10.1007/s10562-008-9456-y
  22. Khayoon, M. S. and Hameed, B. H., "Acetylation of Glycerol to Biofuel Additives over Sulfated Activated Carbon Catalyst," Bioresour. Technol., 102, 9229-9235(2011). https://doi.org/10.1016/j.biortech.2011.07.035
  23. Hara, M., "Biodiesel Production by Amorphous Carbon Bearing $O_3H$, COOH and Phenolic OH Groups, a Solid Bronsted Acid Catalyst," Top. Catal., 53, 805-810(2010). https://doi.org/10.1007/s11244-010-9458-z
  24. Hasan, Z., Hwang, J.-S. and Jhung, S. H., "Liquid-phase Dehydration of 1-phenylethanol to Stylene over Sulfonated D-glucose catalyst," Cat. Commun., 26, 30-33(2012). https://doi.org/10.1016/j.catcom.2012.05.002
  25. Okamura, M., Takagaki, A., Toda, M., Kondo, J. N., Domen, K., Tatsumi, T., Hara, M. and Hayashi, S., "Acid-catalyzed Reactions on Flexible Polycylic Aromatic Carbon in Amorphous Carbon," Chem. Mater., 18, 3039-3045(2006). https://doi.org/10.1021/cm0605623
  26. Steven, X. S. and Ronald, A. K., "Activation of Sulfated Zirconia Catalysts Effect of Water Content on Their Activity in n-Butane Isomerization," J. Chem. Soc., 94, 1333-1338(1998).

Cited by

  1. Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study vol.60, pp.15-16, 2017, https://doi.org/10.1007/s11244-017-0794-0