참고문헌
- B. Einfeldt, On godunov-type methods for gas dynamics, J. Numer. Anal. vol. 25 No. 2, 1988.
- G. S. Jiang and E. Tadmor, Nonoscillatory central schemes fot multidimensional hyperbolic conservation laws,SIAM J. Sci. Comput.,19, 1998, pp. 1832-1917.
- S. Karni, A. Kurganov and G. Petrova, A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys. 178, 2002, pp. 323-341. https://doi.org/10.1006/jcph.2002.7024
- A. Kurganov and C. T. Lin, On the Reduction of Numerical Dissipation in Central-Upwind Schemes, Commun. Comput. Phys. Vol. 2, 2007, pp. 141-163.
- A. Kurganov, S. Noelle and G.Petrova, Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equation, SIAM J. Sci. Comput.23, 2001, pp. 707-740. https://doi.org/10.1137/S1064827500373413
- A. Kurganov and G. Petrova, Central schemes and contact discontinuities, Math. Model. Numer. Anal. 34, 2000, pp. 1259-1275. https://doi.org/10.1051/m2an:2000126
- A. Kurganov, G. Petrova and B. Popov, Adaptive semi-discrete central-upwind schemes fot nonconvex hyperbolic conservation law, SIAM. J. Sci. Comput. Vol 29, No. 6, 2007, pp. 2381-2401. https://doi.org/10.1137/040614189
- A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations,J. Comput. Phys. 160, 2000, pp. 241-282. https://doi.org/10.1006/jcph.2000.6459
- P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,Comm. Pure Appl. Math. 1954, pp. 159-193.
- K. A. Lie and S. Noelle, On the artificial comprssion method for second-order nonoscillatory central difference schemes for systems of cnoservation laws, SIAM J. Sci. Comput. 24, 2003, pp. 1157-1174. https://doi.org/10.1137/S1064827501392880
- X. D. Liu and E. Tadmor, Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math. vol. 79 , 1988, pp. 397-425.
- H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87, 1990, pp. 408-463. https://doi.org/10.1016/0021-9991(90)90260-8
- S. Shin andW. Hwang, Central schemes with Lax-Wendroff type time discretizations, Bull. Korean Math. Soc. No. 4, 2011, pp. 873-896. https://doi.org/10.4134/BKMS.2011.48.4.873
피인용 문헌
- Four-Quadrant Riemann Problem for a 2 × 2 System Involving Delta Shock vol.9, pp.2, 2013, https://doi.org/10.3390/math9020138
- Four-Quadrant Riemann Problem for a 2×2 System II vol.9, pp.6, 2021, https://doi.org/10.3390/math9060592