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COMPATIBILITY IN CERTAIN QUASIGROUP

HOMOGENEOUS SPACE

Bokhee Im and Ji-Young Ryu

Abstract. Considering a special double-cover Q of the symmetric group
of degree 3, we show that a proper non-regular approximate symmetry
occurs from its quasigroup homogeneous space. The weak compatibility of
any two elements of Q is completely characterized in any such quasigroup
homogeneous space of degree 4.

1. Preliminaries and introduction

A quasigroup is defined as a set Q equipped with a multiplication, not nec-
essarily associative, such that in the equation

x · y = z ,

knowledge of any two of the elements x, y, z of Q specifies the third uniquely.
In particular, the solution for x in terms of y and z is written as z/y. The body
of the multiplication table of a finite quasigroup is a Latin square, while each
Latin square may be bordered to give the multiplication table of a quasigroup
structure on its set of entries. Nonempty associative quasigroups are groups. A
large part of the study of quasigroups aims to extend various aspects of group
theory to the more general context of quasigroups [6].

Groups arise from symmetry, understood through transitive group actions.
Such actions may be defined equally well for quasigroups, where they lead to
the concept of approximate symmetry. Applications in biology and other fields
are now raising the problem of developing a rigorous theory of approximate
symmetry [5].

Definition 1.1 ([6]). Let P be a subquasigroup of a finite, nonempty quasi-
group Q.
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(1) The relative left multiplication group LMltQP of P in Q is the subgroup
of the symmetric group SymQ on the set Q which is generated by all the left
multiplications

L(p) : Q → Q; x 7→ px

for elements p of P .
(2) The homogeneous space P\Q is defined as the set of all orbits of LMltQP

on Q. The cardinality |P\Q| is called the degree d of the homogeneous space
P\Q. For each element q of Q, the right multiplication by q is the permutation

R(q) : Q → Q;x 7→ xq

of Q. The action matrix RP\Q(q) of q on P\Q is the d × d row-stochastic
matrix with entry

[RP\Q(q)]XY =
|XR(q) ∩ Y |

|X |

in the row labeled by the LMltQP -orbit X and column labeled by the LMltQP -
orbit Y . The homogeneous space P\Q is understood as the set of all orbits of
LMltQP on Q together with the action map q 7→ RP\Q(q).

If P is a subgroup of a finite groupQ, then the homogeneous space P\Q is the
set of right cosets of P , and the action matrices become permutation matrices.
The quasigroup action may be interpreted as a proper (non-exact) approximate
symmetry if at least one action matrix is not a permutation matrix. A proper
approximate symmetry has been defined as an exact symmetry holding at least
one level of a hierarchial system in [5, 6].

We restrict ourselves to the following special case in this paper;
(AS1) a hierarchy with just two levels, so called, macroscopic and micro-

scopic,
(AS2) exact three-fold symmetry only at the macroscopic level as follows:

Macrostates: A B C
Microstates: a, a′ b c

,

where P\Q = {a = P, a′, b, c}, A = {a, a′} , B = {b}, C = {c}. Acknowl-
edging the distinction between a and a′, however, we will see this symmetry is
approximate in the microscopic level.

We consider a quasigroup obtained by permuting entries in the multiplica-
tion table of the direct product S3 × Z2 of the symmetric group S3 with the
2-element additive group Z2 of integers modulo 2 as in [3], and want to es-
tablish a non-regular approximate symmetry from a quasigroup homogeneous
space of degree 4 in this paper.

For convenience, let us use the notation πǫ to denote an element (π, ǫ) of
S3×Z2. Six elements of S3 are denoted as three rotations ρ0 = (0), ρ1 = (021),
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ρ2 = (012), and three reflections σ0 = (12), σ1 = (02), σ2 = (01). Z2 = {0, 1}
as in [3]. Consider a relation λ · µ = ν in S3. The corresponding fragment

(1.1)

[

ν0 ν1

ν1 ν0

]

of the body of the multiplication table of S3 × Z2, indexed by the respective
rows labeled λ0, λ1 and columns labeled µ0, µ1, is known as the intercalate

corresponding to the source λ and sink µ.
The body of the multiplication table of the group S3 ×Z2 is a Latin square.

It remains a Latin square if the intercalate (1.1) is changed to

[

ν1 ν0

ν0 ν1

]

.

Altogether, 236 quasigroup structures on the set S3×Z2 are obtained by making
such intercalate changes in the body of the multiplication table of the group
S3 × Z2. Each such quasigroup is specified uniquely by a directed graph Γ (in
which loops are allowed) on the vertex set S3: The intercalate corresponding
to the source λ and sink µ is changed precisely when there is a directed edge
in Γ from the source λ to the sink µ. Write Q(Γ) for the quasigroup specified
in this way by a directed graph Γ. Let M(Γ) = [γλµ] be the adjacency matrix
of Γ, interpreted as a matrix over the field Z2. Then for λ, µ in S3 and l, m in
Z2, the equation

(1.2) λl · µm = νl+m+γλµ

specifies the product of λl and µm in Q(Γ), given the product relation λ ·µ = ν
in S3. Note that the projection

(1.3) θ : Q(Γ) → S3;λ
l 7→ λ

is a quasigroup homomorphism.
Lemmas 2.1 and 2.2 determine which Γ yields our homogeneous space P\Q

of degree 4. In Theorem 2.3 we see that the action matrices of Q := Q(Γ)
are independent of the choices of a directed graph Γ and all action matrices
of our homogeneous space P\Q are listed completely. Then we completely
characterize the weak compatibility of any two elements of Q in Theorem 3.3.
However, the strong compatibility of Q still remains to be solved.

As long as strong compatibility of any two elements of Q is characterized
in quasigroup homogeneous space of degree 4, based on that result, we expect
to characterize the compatibility completely for the case of degree 6 without
much trouble, in which case the homogeneous space is uniform. And such
graph-theoretical characterization of compatibility will be used to study sharp
tnansitivity in a quasigroup. For further details, see [3].
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2. Action matrices

We follow notations and terminologies as described in the previous section.
Let us arrange a quasigroup Q = S3 × Z2 as an ordered set

{ρ00, ρ
1
0, σ

0
0 , σ

1
0 , ρ

0
1, ρ

1
1, σ

0
1 , σ

1
1 , ρ

0
2, ρ

1
2, σ

0
2 , σ

1
2}

according to the ordered set S3={ρ0, σ0, ρ1, σ1, ρ2, σ2}={1, 2, 3, 4, 5, 6} so that
we have the exact symmetry in the macroscopic level of our hierarchial system
throughout this paper.

Lemma 2.1. Let Q := Q(Γ) be a quasigroup specified by a directed graph Γ
and let P be a subquasigroup of Q. Suppose the homogeneous space P\Q is of

degree 4. Then we have

(1) P must be of order 2 and contain either ρ00 or ρ10 but not both,

(2) If ρε0 ∈ P , then γρ0ρ0
= ε, where ε = {0, 1}.

Proof. (1) We must exclude the case of P being {ρ00, ρ
1
0} which implies that

P\Q is isomorphic to the group S3.
(2) If ρε0 ∈ P , then by definition of γλµ in (1.2), we have ρε0ρ

ε
0 = ρ

γ1,1

0 which
must be in P , hence we have γ1,1 = ε. �

By the above lemma, we should have P as only one of the following four
subsets {ρ00, σ

0
i }, {ρ

0
0, σ

1
i }, {ρ

1
0, σ

0
i }, {ρ

1
0, σ

1
i } for each i = 0, 1, 2. Without loss

of generality we assume i = 0 in this paper. Our homogeneous space P\Q only
depends on the first two rows of the adjacency matrix of Γ by the definition.

Lemma 2.2. Let Q = Q(Γ) be a quasigroup and let P\Q be the homo-

geneous space of degree 4. Then we can interpret the homogeneous space

P\Q to have three states A := {ρ00, ρ
1
0, σ

0
0 , σ

1
0}, B := {ρ01, ρ

1
1, σ

0
1 , σ

1
1}, and

C := {ρ02, ρ
1
2, σ

0
2 , σ

1
2} in the macroscopic level, and four states P , A− P , B, C

in the microscopic level. Moreover, we need the following restrictions only in

the first two rows of the adjacency matrix of Γ in each case;
(1) If ρ00 ∈ P , then the minor matrix

[ γ1,1 γ1,2
γ2,1 γ2,2

]

of the adjacency matrix of

Γ is [ 0 0
0 0 ] and the minor matrix

[ γ1,s γ1,s+1

γ2,s γ2,s+1

]

of the adjacency matrix of Γ is

neither [ 0 0
0 0 ] nor [ 0 0

1 1 ] for s = 3, 5.
(2) If ρ10 ∈ P , then the minor matrix

[ γ1,1 γ1,2
γ2,1 γ2,2

]

of the adjacency matrix of

Γ is [ 1 1
1 1 ] and the minor matrix

[ γ1,s γ1,s+1

γ2,s γ2,s+1

]

of the adjacency matrix of Γ is

neither [ 1 1
1 1 ] nor [ 1 1

0 0 ] for s = 3, 5.

Proof. (1) By lemma 2.1, if ρ00 ∈ P , then γ1,1 = 0. And since |P | = 2,
macrostate A consists of two orbits P and A − P , where P is either {ρ00, σ

0
0}

or {ρ00, σ
1
0}. So we should have σε

0ρ
0
0 = σε

0 = σ
ε+γ2,1

0 , hence we have γ2,1 = 0.
Similary, γ1,2 = γ2,2 = 0. There are 24 possibilities to be checked. And
suppose {0, 1}= {ε, τ}. If the minor matrix

[ γ1,s γ1,s+1

γ2,s γ2,s+1

]

= [ 0 0
0 0 ], the macrostate

B divides into two orbits {ρ01, σ
ε
1}, {ρ

1
1, σ

τ
1} if σε

0 ∈ P . Now let’s check for the
rest of 24−1 choices. If γ1,s = 1, then ρ00ρ

0
1 = ρ11, hence the orbit of ρ

0
1 becomes

B. Similarly B is the orbit of σ0
1 for the case when r1,s+1 = 1. Now let‘s
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consider when γ1,s = γ1,s+1 = 0. If γ2,s = 1 6= 0 = r2,s+1, then σε
0ρ

0
1 = στ

1 and
σε
0σ

1
1 = ρτ1 , i.e., ρ

0
1 and ρ11 are in the same orbit B. Hence this case is allowable.

Similarly the case when γ2,s = 0 6= 1 = γ2,s+1 is allowable. However we need to
exclude the case of γ2,s = γ2,s+1 = 1, where B consists of two orbits {ρ01, σ

τ
1},

{ρ11, σ
ε
1} if σε

0 ∈ P .
(2) is analogous to the case of (1). �

Theorem 2.3. Let Q = Q(Γ) be a quasigroup and let the homogeneous space

P\Q be an ordered set
{

P,A−P,B,C
}

. Action matrices of Q(Γ) are indepen-

dent of the choices of P and of a directed graph Γ, and
(1) the action matrices of elements in A are precisely one of the following

[

I O
O I

]

,

[

T O
O I

]

,

[

I O
O T

]

,

[

T O
O T

]

,

(2) the action matrices of elements in B or C are precisely one of the fol-

lowing




O j 0t

0 0 1
u 0 0



 ,





O 0t j

u 0 0
0 1 0



 ,





O j 0t

u 0 0
0 0 1



 ,





O 0t j

0 1 0
u 0 0



 ,

where

I =

[

1 0
0 1

]

, T =

[

0 1
1 0

]

, O =

[

0 0
0 0

]

,

0 =
[

0 0
]

, u =
[

1
2

1
2

]

, j =

[

1
1

]

.

Proof. Suppose a subquasigroup P is any of our 4 cases.
(1) If ρε0 is in P, then

[ γ1,1 γ1,2
γ2,1 γ2,2

]

= [ ε ε
ε ε ] by Lemma 2.2. Hence the identity

matrix is the action matrix corresponding to q = ρε0 ∈ P . And the second
matrix listed in Lemma corresponds to element q2 in A − P , where θ(q) is a
rotation. For q ∈ A, if θ(q) is a reflection in P , then the corresponding action
matrix of q is the third matrix and if θ(q) is a reflection in A − P , then the
corresponding action matrix of q is the fourth matrix.

(2) By definition we get the following 4 matrices only.

RP\Q(ρ
0
1) = RP\Q(ρ

1
1) =





O j 0t

0 0 1
u 0 0



 ,

RP\Q(ρ
0
1) = RP\Q(ρ

1
2) =





O 0t j

u 0 0
0 1 0



 ,

RP\Q(σ
0
1) = RP\Q(σ

1
1) =





O j 0t

u 0 0
0 0 1



 ,
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RP\Q(σ
0
2) = RP\Q(σ

1
2) =





O 0t j

0 1 0
u 0 0



 .

Note that action matrices of Q(Γ) are independent of the choices of P and of a
directed graph Γ. �

Note 2.4. Action matrices of two elements in P (resp. A− P ) have the same
(1, 1)-entry I (resp. T ). Note that the (1, 2)-entry of action matrix of each
element in B is identically j = [ 11 ] . For the case of C, (1, 3)-entry is involved.

Remark 2.5. If the distinction between two microstates P and A−P is ignored,
then we obtain exact 3-fold symmetry between three macrostates A, B and C.
However, acknowledging the distinction between two microstate P and A− P ,
we see this symmetry is only approximate in the microscopic level. For example,
let

M =





O j 0t

u 0 0
0 0 1



 =









0 0 1 0
0 0 1 0
1
2

1
2

0 0
0 0 0 1









be an action matrix. Then applying an action matrix M to the first microstate
P gives the third microstate B, but an application of M leads the first state P
only with probability a half, otherwise gives the second microstate A− P .

3. Compatibility

Definition 3.1 ([3]). Suppose that P is a subquasigroup of a finite, nonempty
quasigroup Q.

(a) Two distinct elements q1 and q2 of Q are said to be strongly compatible

(in the action on P\Q) if

R(q1)
−1(Y ) ∩R(q2)

−1(Y ) = ∅

for all points Y of P\Q.
(b) Two distinct elements q1 and q2 of Q are said to be weakly compatible

(in the action on P\Q) if

[RP\Q(q1)]XY + [RP\Q(q2)]XY ≤ 1

for all points X and Y of P\Q.

Proposition 3.2. Let P be a subgroup of a finite group Q. In the action on

P\Q, the strong compatibility of two elements q1, q2 of Q is equivalent to their

weak compatibility.

Now we can completely characterize the weak compatibility of any two ele-
ments of Q in the following theorem.
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Theorem 3.3. Let Q := Q(Γ) be a quasigroup and let the homogeneous space

P\Q be of degree 4. Let q1 and q2 ∈ Q. Then

(1) If both θ(q1) and θ(q2) are rotations or reflections, but not in the same

macrostates A, B or C, then q1 and q2 are weakly compatible.

(2) If θ(q1) is a rotation and θ(q2) a reflection, then q1 and q2 are weakly

compatible only in the following cases;
(i) q1 and q2 are both in the macrostate A and in the different orbits P and

A− P ,

(ii) q1 and q2 are in the different macrostates B,C.

Proof. By Note 2.4, any two elements in the same orbit are not weakly com-
patible. (1) Suppose θ(q1) and θ(q2) are both rotations or reflections but not
in the same macrostates A, B or C. Then q1 and q2 are strongly compatible
by the group structure of S3. So q1 and q2 are also weakly compatible.

(2) Let θ(q1) be a rotation and let θ(q2) be a reflection. (i) From the proof of
Theorem 2.3, we note that the action matrix of a rotation in P is the identity
matrix, that of a rotation in A − P is a 2 × 2 block matrix [ T O

O I ], that of a
reflection in P is [ I O

O T ], and that of reflection in A−P is [ T O
O T ]. So if q1 and q2

are both in the macrostateA and in the different orbits P andA−P , then q1 and
q2 are weakly compatible. However if q1 and q2 are both in the same orbits P
or A−P of A, then (1,1)-block breaks the condition for the weak compatibility
of q1 and q2. (ii) Suppose q1 and q2 are in the different macrostates B, C. By
the action matrix of qi ∈ B,C in the proof of Theorem 2.3 and the definition
of weak compatibility, we know that the weak compatibility of two elements
q1 and q2 of Q. If q1 is in A and q2 is in the B or C, then q1 and q2 are not
weakly compatible. Indeed, [RP\Q(q1)]XY + [RP\Q(q2)]XY = 2 > 1 in case of
X = C , and Y = B or C. �

Remark 3.4. The strong compatibility of any two elements of Q still remains
to be solved. We need to check the strong compatibility only for those cases
mentioned in Theorem 3.3 due to Proposition 3.2. But the main trouble is the
case (2 - ii) of Theorem 3.3. When this case is also solved, then we expect the
result will lead to characterization of the compatibility for the case of quasi-
group homogeneous space of degree 6 without too much trouble, in which case
the homogeneous space is uniform and such graph-theoretical characterization
of compatibility will be used to study sharp tnansitivity in a quasigroup.
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