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CHARACTERIZATIONS OF GEOMETRICAL PROPERTIES
OF BANACH SPACES USING -DIRECT SUMS

ZHIHUA ZHANG, LAN SHU, JUN ZHENG, AND YULING YANG

ABSTRACT. Let X be a Banach space and v a continuous convex function
on Ak satisfying certain conditions. Let (X X @ - - P X)y be the
1-direct sum of X. In this paper, we characterize the K strict convexity,
K uniform convexity and uniform non—l{v
1-direct sums.

-ness of Banach spaces using

1. Introduction
A norm || - || on C™ is said to be absolute if
x1, 22, ... x| = |(|21], |22], - - -, |za])||  for any (x1,ze,...,z,) € C"
and normalized if
I(1,0,...,0)]| =1(0,1,0,...,0)]| =--- =/(0,...,0,1)].

The [,-norms are such examples:

(e f? + [zl? 4+ + fzal?)¥, 1< p < oo

[(z1,22,. .. 20)|lp =
max{|x1|, |:L'2|, R |$n|}, p = .

Let AN,, be the family of all absolute normalized norms on C*. When n =
2 Bomnsall and Duncan [2] showed the following characterization of absolute
normalized norms on C2. Namely, the set AN, of all absolute normalized
norms on C2 is in one-to-one correspondence with the set ¥y of all continuous
convex functions on [0, 1] satisfying ¢(0) = ¢(1) = 1 and max{1—t,t} < (t) <
1,0 <t < 1. The correspondence is given by

(1) P@) =L =-t0)l, 0<t<1
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Indeed, for any ¢ € Us, define

(2] + [w)e( ), (z,w) # (0,0)
0, (z,w) = (0,0).

1(z, w)lly = {

By calculation we have || - ||, € ANy and || - ||y satisfies (1). From this result,
there are plenty of concrete absolute normalized norms of C? which are not
l,-type.

In [13] K.-S. Saito, M. Kato and Y. Takahashi generalized the result to C™.
Before stating it, we give some notations. For each n € N with n > 2, we put

n—1
Ap =1 (1 to,ts,. . te1) ERTH i8>0, 85 <1

j=1

and define the set ¥, of all continuous convex functions on A,, satisfying the
following conditions:

(AO) 1/)(070""70):1/)(170""70):...:1/)(07""071)’

t th
(A2) Dt tay. o tno) = (L= t)Y (0, ——, ..., 2 ), if t1 £ 1,
1—1 1—1t
tq th-1
(A3) Yty ta, .. tno1) > (1 —t2)0 ,0,..4, , if tg # 1,
1—1ts 1—ty
(An)
t1 tn—2 .
titoy e tno1) > (1=t 0), ift,_q #1.
P(ti,ta, .. ta—1) > ( 1)¢<1_tn_1 T—— 0) i | #

K.-S. Saito, M. Kato and Y. Takahashi in [13] showed that, for each n € N
with n > 2, AN,, and ¥,, are in one-to-one correspondence under the following
equation:

n—1
(2) ’L/J(fl,...,tn_l): (1—th,t1,...,tn_1) ,(fl,...,fn_l) eAn.
j=1
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Indeed, for any ¢ € ¥,,, the norm || - || on C™ is defined as

n—1
(5 i) v | .o
) n—1 sty p—1 )
|\($0,$1,---7$n—1)|\w = =0 i=0 ol igﬂ il
(SC(),SCl,...,ZL'nfl) 7é (0,,0)

0, (1‘0,1‘1,...,$n,1>:(0,...,0).

Moreover, M. Kato, K.-S. Saito and Tamura in [6] introduced the t-direct
sums (X1 P Xo P - -- P X,)y as follows. Let X1, Xo, ..., X, be Banach spaces
and let ¢ € ¥,,. Then the product space X1 X Xo X --- x X, with the norm

1,22, zn)lly = ([l le2lls - llzalDlly, @€ Xi, 1<i<n,

is a Banach space which is denoted by (X1 P Xo P - - P X,)y. They showed
that (X1 P X2 P --- P X)y is strictly convex (uniformly convex) if and only
if X7, Xo,...,X, is strictly convex (uniformly convex) and ¢ € ¥,, is strictly
convex. In [7] the authors presented that X P, Y is uniformly non-square
if and only if X and Y are uniformly non-square and ¢ # 1,%. Since
the introduction of 1-direct sums of Banach spaces, it has attracted plenty of
attention and been treated by several authors (cf. [3, 4, 5, 12, 16]).

In particular, K.-I. Mitani and K.-S. Saito in [11] characterized the strict
convexity, uniform convexity and uniform non-squareness of Banach spaces
using -direct sums X @d} X. They showed that, if ¢y is a unique minimal
point, a Banach space X is strictly convex if and only if, for each xz,y € X with
T # y, then

11— to)a + toy < ﬁml —to)z.toy)llgs € Vo

As for the cases of uniform convexity and uniform non-squareness, they gained
some similar results.

Our main purpose of this paper is to give the characterization of K strict
convexity, K uniform convexity and uniform non-/{¥-ness using 1-direct sums
(XPXP---PX)y, we first characterize the K strict convexity using -
direct sums. We show that, if ¢ has a minimal point sg = (¢1,%2,...,tx), and
O<t;<1l,i=1,2,..., K and 0 < Zfilti < 1, then a Banach space X is K
strictly convex if and only if for any zg,x1,...,2x € X, with zg,21,...,Tx
linearly independent, we have

Htol'o + t11'1 —+ -+ tK:L'KH < LH(tOan t1:c1, . 7tK$K)||w7
¥(s0)
where ZiK:O t; = 1. As a result, we can give different characterization by
choosing different . In contrast with the result of K.-I. Mitani and K.-S. Saito
[11], the uniqueness of ¢y is not required, but the linear independence of x and
y is necessary. Moreover when K = 1, we get the characterization of strict
convexity. In Section 3, we also characterize the K uniform convexity and
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make Theorem 8 in [11] as our Corollary 3.5. In Section 4, the characterization
of uniform non-/#¥-ness is gained by adding the uniqueness of minimal point.

2. K strict convexity

A Banach space X is said to be K strictly convex (cf. [14]) if and only if
for any K +1 elements xg, 21, ...,k in X, whenever || Zfio x| = ZiK:O Il 1]
then xzg, 21, ..., 2k are linearly dependent.

The closed unit ball of a Banach space X is {z € X : ||z|| < 1} and is
denoted by Bx, the unit sphere of X is {z € X : ||z|| = 1} and is denoted by

Sx. It is obvious that when K =1, X is strictly convex.

Proposition 2.1 (cf. [8]). Let X be a Banach space. For all non-zero elements
T1,%2,...,Tyn € X, the following inequality holds:

) — ) i ) <Z )
I3 will+ =0 ol | min Bl < 3 el
Jj=1 Jj=1 Jj=1

n n
.
<Yzl + {n=1 H:cJ-HH Joax |-
=1 =1 %7 ==

Lemma 2.2. Let X be a Banach space. Then the following assertions are
equivalent.

(1) X is K strictly convex.

(2) For any xo,z1,...,2x € Sx, whenever HZin:@H = K + 1, then
o, T1,...,Txr are linearly dependent.

(3) If xo,21,...,2Kx € Sx and xg, 21, ...,xx are linearly independent, then
for any {t;} K, satisfying 0 < t; < 1, Zfio t; = 1, there holds || Zfio tixi| < 1.

(3/) If xg,x1,...,xx € Sx and xg,x1, ..., TK are linearly independent, then
there exists {t;} £ with 0 < t; < 1, Zfio t; = 1, such that || Zfio tizi| < 1.

Proof. (1) = (2) is obvious.

(2) = (1) Let any xo,1,..., 2 € X\{0}, and | 5 2]l = S5, @]
fioni—in | = K + 1. Hence Hi—zH’Hz—iH’“" ”ii”
are linearly dependent, so do xg,x1,...,2K.

(2) = (3) Assume that the conclusion falls to hold. Then there exists {t;}X
satisfying 0 < ¢; < 1, EZK:O t; =1, but || Zfio t;x;|| = 1. Using Proposition 2.1
we have

By Proposition 2.1 we have || >

K K K
i .
1Yt + <K+ 1—> ||=TZ'H ||> Jmin [tz < Y il
¢ == i=0

i=0 =0

K K
L
< : : - ] ] .
< IIEQWH + <K+ 1—| Z; EX ”) omax. [tz
1= 1=
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Hence || ZiK:O ﬁ | = K+ 1. So xg,1,...,xx are linearly dependent. Con-
tradiction.

(3) = (2) Clearly.

(2) = (3') We just need to let t; = 2=, i=0,1,..., K.

(3") = (2) If there are zq,x1,...,2x € Sx and satisfying || ZZK:O x| =
K +1, but xg,21,...,2k are linearly independent. Then there exists {¢;}5,
with 0 < ¢; < 1,21.[20 t; =1, and || Efio t;x;|| < 1. Considering Proposition
2.1 we have

K K K
1= tillll < |t + (K +1— || sz‘H)Ogl;g( [t
1=0 1=0 1=0 -

that is || ZiK:O t;x;]| > 1, contradiction. O

Theorem 2.3. Let ¢ € Vgy1. Assume that ¥ has a minimal point sy =
(t1,t2,...,tk), and 0 < t; < 1,i=1,2,... . K and 0 < Zfilti < 1. Then a

Banach space X is K strictly convex if and only if for any xg,x1,...,2x € X,
with xg,x1,...,Tx linearly independent, we have
1
Ht0$0 +tix1+---+ tK$K|| < —H(tol‘o, tixy,... ’tK‘TK)”w’
¥(so0)

where ZiK:o t; = 1.

Proof. Assume that X is K strictly convex. Since t(s) > (so) for all s €
Agy1, and tozg,t121,. .., txkxk are linearly independent, then we have

ltoxo + t121 + - - + trx k]|
< |ltoxol| + lt1z1]| + -+ - + ||tz k]|

= [[(towo, t11, ..., txTK) |1
P1(s)
< max ———=||(toxo,t121,...,txx
S B 00 | (tozo, t121 KTk )|y
e (too, i, )|
minw(s)oo’ll’ KT )|y
SGAK+1
—|(tozo, i, . i) |
= T 0r0,01%1, ..., LKTK .
Y(s0) v
Conversely for any z; € Sx,t =0,1,..., K with g, 21,...,xx linearly inde-

pendent. We have
ltoxo +t121 + - - - + tx k||

< 1 (tozo.t terr)|
OSCO, 11"1;"'7 KTK
Y(s0) v

1
= —”(thtla"'atK)Hw

¥(s0)
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1
¥(s0)

Corollary 2.4. Let i) € WUy, Assume that ¢ has a minimal point to. Then a
Banach space X is strictly convex if and only if, for each x,y € X with x,y
linearly independent we have

K
||(1fzti7tla-'-7tK)H¢ =1
i=1 O

I(1 = to)z + toy| < ﬁl\((l —to), toy)lly-

Corollary 2.5. If¢ = wple Vg1, when 1 < p < o0, Pp(ty,ta,...,tx) = ((1—
Zfil 6P+t +- -+ t5)v. Note that f071“ any s # (ﬁ, . ﬁ), 5€ Mgy,
Pp(s) > wp(ﬁ,...,ﬁ) = (K + 1)»~*. Then a Banach space X is K
strictly convex if and only if for any xg,z1,...,cx € X with xo,x1,...,TK
linearly independent, we have

”x0+$1+--'+$K lzol|? + -+ |lzx|?
K+1 K+1

Theorem 2.3 does not require that v is strictly convex. This should be
contrasted with the result of [6], i.e., (X1 P X2 P - -- P X,,)y is strictly convex

17

if and only if X7, X5, ..., X,, are strictly convex respectively and v is a strictly
convex function on A,,. Thus, let ||| = max{||-||2, A||]|1} (\/%H < A<1). Let
1 be the corresponding convex function of ||-||. Then for any s = (s1,...,8k) €
AVIRE
K
Bs) = 10— sivs1, s 56)]
i=1

K K
= max{”(l =Y sivsty k)2 A1 - Zsi,sl,...,sK)Hl}
i=1 i=1

= max{ia(s), A}
Since mingea ., ¥2(s) = \/;7_‘_1 Then
(A o <un(s) <A
vis) = { Ua(3) A < ha(s) < 1.

For 15(s) is continuous on Ag 41, we have mingea,,, ¥(s) = A and 1 is not
strictly convex on Agyi. Applying Theorem 2.3, we can give the following
characterization using ¥ above.

Corollary 2.6. Let \/I;—H < A < 1. Then a Banach space X is K strictly

convez if and only if for any xg,x1,...,xx € X, with xg,x1,...,Tx lnearly

independent, we have
|‘x0+x1+...+xK

K+1
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1 24 ... 2)3
o L d ol o) o+ + o]
A K+1 K+1

1
e d Umoll? 4 laxe?)E flwoll 4+ + [l |
MK +1) ’ K+1 '

3. K uniform convexity

We say that a Banach space X is K uniformly convex (or K uniformly
rotund see [15]) if for any € > 0, there exists some § = §(¢) > 0, such that

whenever zg, x1,...,2x € Sx and ||[zo+ 21+ -+ 2| > (K +1) -4, we have
A(zo, w1, .., TK)
1 1 1

— sup fixo)  fi(z1) - filzk)
fr(@o) fx(x1) - fx(7k)

In the case of K =1, X is uniformly convex.

AfiHE, CBx- p <e.

Proposition 3.1 (cf. [17]). Let X be a Banach space. Then X is K uniformly
convez if and only if for any K + 1 sequences {z{}, {z7},..., {z’k} in X, if

|2 = a,n — 00,0 =0,1,2,..., K and |zj + 27 + - + 2%| — (K + 1)a,
then

lim A(x{,z%,...,2%) =0.

n—oo
Proposition 3.2 (cf. [9]). Let {z%}x, {z5}x,.. ., {zE )1 be n sequences in a

Banach space X for which the sequences of their norms are convergent. Then
the following are equivalent.

(1) Jim || Sy 24 = lim S k.

(2) Jim ot + 50, okl = lim (alfa} |+ S, 1) for all o> 0.

(3) Jim [l + X0y o = Jim (allat] + S0y ) for some a > 0.
Proposition 3.3 (cf. [13]). Let v € V,, and let x = (z1,22,...,Zpn),y =
(y1,Y25 .-, Yn) € C™. Then

(1) If x| < [yl, then [|z[ly < [lylly-

(2) If o is strictly conver and |x| < |y|, then ||z|ly < ||yl
For x = (x1,22,...,2,) € C", denote |x| by |x| = (|21, |z2], .-, |za]). We say
that |z| < ly| if |xj] < |y;] for 1 < j < n. Further, we say that || < |y| if
|z| < |y| and |z;| < |y;| for some j.

Theorem 3.4. Let v € V1. Assume that ¥ has a unique minimal point
s0 = (t1,t2,...,tKk), with 0 < t; < 1, Zfil t; < 1. Then a Banach space X is
K uniformly convex if and only if for any € > 0, there exists some 6 > 0, such
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that for any xg,x1,...,xx € Bx, satisfying
towo 4+ t121 + - - +txak| > (1 — 5)@”@0&60, t1w1, .t ) ||y,
0
where ZZK:O t; =1, then we have A(xg,1,...,2K) < €.
Proof. Let X be a K uniformly convex Banach space. Assume that there
exists g > 0, for any n € N, there are sequences {zg}, {z7},...,{z%} in Bx
satisfying
1 1
(3) Mtoxg +trzy + -+ +txak| > (1 — =) ——I[(foxg, tral, . .., L) [l y-
n’ ¥ (so)
But A(zf,z7, ..., 2%) > eo.

Since {||lz7]}52,, i = 0,1,..., K and {|| 5, t;27]|}32, are bounded se-
quences, without loss of generality we can let ||z'] — a; (n — 00),i =
0,1,...,K and |[toxy + t12} + -+ + tgx%|| = b (n — o0). Moreover, we can
choose {||z?]|}52; such that max{||z?|,0 < ¢ < K} = 1. Thus max{a;,0 <
i < K} = 1. From this, 3%  t;a; > 0. It is clear that 0 < a; <1,0< b < 1.
Considering the equality (2), we have

1
(1 - E)"/)(SO> H(to(Eg, tlx?a s th}l()”w
1 1 n n n
=(1- 5)—1/)(5(0 [ Gollzg Il tallzyll, - - trcllz Dl

< ||t01‘8 + tlx? + -4 tK.T?(H
< tollzgll + tallzy | + - + txllzk |-

Let n — oo. Then m”(toao,tlal, e ,tKaK)”w S toao + t1a1 + -+ tKaK
holds. Hence

tiaq tkax
w K 9y K Sw(so):w(tlﬂtQa"'atK)'
Zizo t;a; Zi:o t;a;
From the uniqueness of sy, we get ag = a1 = --- = ax. Let us denote them as
a. Moreover,

K K
lim || E t;xl|| = lim E [tz
n—oo | £ ¢ n—o0 £~ ¢
1= 1=

Using Proposition 3.2 we get

n—oo

K K

. 1 .

i - t028 + 3t = i (el + 3 o)
1= 1=

Repeat the similar process above for K + 1 times, we have

K K
Tim 3 = Jim 3 e = (K + D
1=0 1=0
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Hence there is limy,_,o0 A(zf, 2}, ..., 2%) = 0. By Proposition 3.1, it is a con-
tradiction.

Conversely, for any € > 0 there exists some § > 0, such that for any
X0, L1, .., 2K in Sx with A(zg,x1,...,2x) > &, we have

lltoxo + trz1 + - - + trxk||

S (175) )H(tOzO;tlxly---;thK)”w

L
1P(So

< (1-46) I(to, t1, - tx) |y =1 — 6.

1
¥(so0)
By Proposition 2.1 we have

K K K
L= tilluill < (K + 1= || D al) max tilla + | ) i
=0 =0 - =0

K
SE+1-|D al)+1-0
=0

Hence || 25 2] < (K +1) — 4. 0

Corollary 3.5 (cf. [11]). Let ¢ € Uy. Assume that ¢ has a unique minimal
point tg. Then a Banach space X is uniformly convex if and only if, for every
e > 0, there exists some § > 0 such that |z —y|| > &,x,y € Bx implies

1
11 —to)x +toyll < (1 = 6)——= (1 — to)z, toy) ¢
¥(to)
Corollary 3.6. Let1)(s) = ¢p(s) = [(17221-1(:1 $i)P+si+- - -+SII’<]%, 1<p<oo.
Then 1y (s) has a unique minimal point so = (K;H, K;H, ce ﬁ) A Banach
space X is K uniformly convez if and only if for every e > 0, there exists some

0 > 0 such that for any xg,x1,...,xx n Bx satisfying
Totx 4+ Tk, lzol|? 4 - - - + ||z k]?
I 17> (1-19)
K+1 K+1
implies A(xo, x1,...,2K) < €.
4. Uniform non-1V-ness

1

A Banach space X is said to be uniformly non-1%V (cf. [1, 10]) provided there
exists 6(0 < § < 1) such that for any xo,z1,...,2y-1 in Sx, there exists an
N-tuple of signs 6 = (6;) for which

N—-1
1 0525 < N(1-9).

j=0
In the case of N = 2, X is called uniform non-squareness. As is well known,
we may take xg,x1,...,2y-1 from Bx in the definition (see [8]).
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Lemma 4.1. A Banach space X is uniformly non-1{¥ if and only if there exist
some s = (80, 81,...,SN—1), With vazglsi =1,0<s;<1,i=0,1,...,N — 1,
and some 6(0 < § < 1), such that for any xo,x1,...,xN-1 in Bx, there exists
an N-tuple of signs 6 = (8;), for which | Zj‘\:ol 0is;x;|| <1—24.

Proof. Assume that X is uniformly non-i%V. Let s; = —,i = 0,1,..., N — 1.

N’
For any xg,z1,...,zy_1 in Sy, there exists an N-tuple of signs 9 = (Hj) and
s = (s0,-..,8N-1) with Zi]\;_ol si=1,] ij:_ol Ojsjz;|l < 1—4. Use Proposition
2.1 we have
N-1
L= ) [6;s;z;ll
7=0
_ 0. 0:5:0
ZO sogoall + (V=1 05wl s 10552
N-1
§1—5+N—|| ZGJ.T]H
7=0
Let § = % Then for any xy, xl, ...,xN—1 in Sx, there exists an N-tuple of
signs 6 = (6,), for which HZ 9 :cj|| < N@1-14). O
Lemma 4.2. Let X be a Banach space. Then X is uniformly non-I&V if and
only if for any N sequences {zg}, . {21} in X and |2} || = a(a > 0),n —
00,7 =0,1,.. -1, | ZN o, x"H — Ay for any 6 = (0;), then there exists

an N-tuple of signs 0 = (6 ) for which

lim 0;x" Na.
n—»00 Z i<
=

Proof. Tt is equivalent to prove that: X is not uniformly non-I{¥ if and only
if there exist IV sequences {xg},...,{zy_;} in X and [|2}| — a(a > 0),n —
00,7 =0,1,...,N — 1, for any N-tuple of signs 6 = (6;) there holds

N-1
lim E Hj:c? = Na.
n— oo

Jj=0

Without loss of generality, let @ = 1. On one hand, since [[z7| — 1,j =
0,1,..., N —1, we can assume that [|27| > 0, then { E; "H } C Sx. In addition,
we have

N-1 n

HZ el n” IIZME”II
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N— n N— n
= Z A Z Tar =
=0 7=0
N—
= Z ”an || = 0 (n — o0).
7=0

Hence
- o N-1
. . J _ . . n _
i 1 2 Oy | = Jim | 3 0525 = N
j=0 J j=0
By definition X is not uniformly non-1{".
The converse is obvious from the definition of uniform non-/{'-ness. O

Theorem 4.3. Let v € Uy. Assume that 1 has a unique minimal point
s =(81,82,...,SN—1) with Zf;lsl <1,0<s;<1,0=1,2,...,N—1. Then
a Banach space X is uniformly non-l3¥ if and only if there exists 6(0 < § < 1)

such that for any xg,x1,...,xny_1 in Bx, there exists an N-tuple of signs
0 = (0,), for which

1
| Z sibjz;ll < (1 - 5)@ [(sozo, s121, ..., sv—12N-1)lly »

N-1
where so =1—73% .1 s;.

Proof. Let X be a uniformly non 1Y Banach space. Assume that the conclusion

fails to hold Then for 6, = ;,n € N, there exist sequences {2z} in Bx,
j=0,1,...,N —1, for any N- tuple of signs 6 = (6,), we have
N-1
Z sjﬁjx?
7=0
1 1 n n n
> (1- E)’L/J(S) ||(50z0,51x1,...,SN,lscN_l)Hw
@ == Dol sllat - swoa o]
TL’I/)(S) 0 0ll» | EEIE) — N—-1 P
Because {[|z}[/}72, j = 0,1,..., N — 1 are bounded sequences, we just let
271l — aj(n — o), j =0,1,...,N — 1. Without loss of generality, we can

choose {[|z7]/}52; such that max{[|z7][,0 <j < N -1} =1. As aj is the limit
of {||lz}[|}5Z;, we get max{a;,0 < j < N —1} = 1. Thus Z :O sja; > 0. In
(4) let n — oo, then there is

1 N1
ﬁ”(soao,slal, sy sno1an—1)|ly < Z 8;a;.

(s <
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From this we get

5101 SN—1AN -1
7/’( N—1 PR N—1 ) §7/)(51a---75N71)-
Zj:O S5Qj Zj:O S5045
By the uniqueness of s = (s1,82,...,8N-1), we get ap = a3 = -+ = any—_1,
denote them as a. In addition, from (4) we get lim, sz\f:—ol sjejx;-‘ =1=
limy, 00 ij:_ol ‘sjﬁjx?H. Using Proposition 3.2 there holds
N-1 N-1
. all a
nhﬂn;o Z 0% || = nl;rrgo Z 0;2"] = Na.
7=0 7=0
It’s a contradiction by Lemma 4.2.
On the other hand, for any xg,x1,...,xny—1 in Bx
N-1 1
x| <(1—-06)— _ _
Z sjbiz;|l < ( )1/1(5) [ (sozo, 8121, -+ -, sN—1ZN-1)]l,
7=0
<(1-8) 7 I )
S — — S0y,S81y---3SN—1
¥(s) v
=1-4.
We claim that X is uniformly non-/{¥ by Lemma 4.1. O

Corollary 4.4. Let ¢ € Wy, Assume that ¢ has the unique minimum at
t =to(0 < tp < 1). Then a Banach space X is uniformly non-square if and
only if there exists some 6(0 < § < 1) such that for any x,y € Bx implies

min {[[(1 ~ to)e + tayll (1 — to)ar — toy[} < (1 — 8)—— | (1 — to)a.to)| -

¥(to)
Corollary 4.5. A Banach space X is uniformly non-1&V if and only if there
exists some 6(0 < § < 1) such that for any xo,x1,...,xNn—-1 in Bx, there exists
an N-tuple of signs 6 = (0;) for which
N-1 P
2j—o 95 [zoll” +- - + llzn
—— || £1-=9) ,
N N

where 1 < p < oo.

Proof. We only need to let ¢ (t) = ¢, (t) = [(1 = SN )P + 88 + - + t?v_J v
in Theorem 4.3. d
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