DOI QR코드

DOI QR Code

Face Recognition using Modified Local Directional Pattern Image

Modified Local Directional Pattern 영상을 이용한 얼굴인식

  • 김동주 (대구경북과학기술원 IT융합연구부) ;
  • 이상헌 (대구경북과학기술원 IT융합연구부) ;
  • 손명규 (대구경북과학기술원 IT융합연구부)
  • Received : 2012.10.05
  • Accepted : 2012.12.17
  • Published : 2013.03.31

Abstract

Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

일반적으로 이진패턴 변환은 조명 변화에 강인한 특성을 가지므로, 얼굴인식 및 표정인식 분야에 널리 사용되고 있다. 이에, 본 논문에서는 기존의 LDP(Local Directional Pattern)의 텍스처 성분을 개선한 MLDP(Modified LDP) 변환 영상에 2D-PCA(Two-Dimensional Principal Component Analysis) 알고리즘을 결합한 조명변화에 강인한 얼굴인식 방법에 대하여 제안한다. 기존의 LBP(Local Binary Pattern)나 LDP와 같은 이진패턴 변환들이 히스토그램 특징 추출을 위해 주로 사용되는 것과는 다르게, 본 논문에서 제안하는 방법은 MLDP 영상을 2D-PCA 특징추출을 위해 직접 사용한다는 특성을 갖는다. 제안 방법의 성능평가는 PCA(Principal Component Analysis), 2D-PCA 및 가버변환 영상과 LBP를 결합한 알고리즘을 사용하여, 다양한 조명변화 환경에서 구축된 Yale B 및 CMU-PIE 데이터베이스를 이용하여 수행되었다. 실험 결과, MLDP 영상과 2D-PCA를 사용한 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.

Keywords

References

  1. N.B. Kachare and V.S. Inamdar, "Survey of face recognition techniques," Int. Conf. Computer Applications, Vol.1, No.1, pp.29-33, 2010.
  2. H. Di, S. Caifeng, M. Ardabilian, W. Yunhong, C. Liming, Local Binary Patterns and Its Application to Facial Image Analysis: A Survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C, Vol.41, No.6, pp.765-781, 2011. https://doi.org/10.1109/TSMCC.2011.2118750
  3. T. Jabid, M.H. Kabir, and O. Chae, "Robust Facial Expression Recognition based on Local Directional Pattern," ETRI J., Vol.32, No.5, pp.784-794, 2010. https://doi.org/10.4218/etrij.10.1510.0132
  4. Y. Jian, Z. David, F. Alejandro, and J. Y. Yang, "Twodimensional PCA: A new approach to appearance-based face representation and recognition," IEEE Trans. Pattern Anal. Mach. Intell., Vol.26, No.1, pp.131-137, 2004. https://doi.org/10.1109/TPAMI.2004.1261097
  5. A. Georghiades, P. Belhumeur, and D. Kriegman, "From few to many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Trans. Pattern Anal. Mach. Intell., Vol.23, No.6, pp.643-660, 2001. https://doi.org/10.1109/34.927464

Cited by

  1. A New Confidence Measure for Eye Detection Using Pixel Selection vol.4, pp.7, 2015, https://doi.org/10.3745/KTSDE.2015.4.7.291