DOI QR코드

DOI QR Code

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber

팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발

  • Noh, Tae-Kyu (School of Electrical Engineering, Pukyong National University) ;
  • Kim, Young-Ho (School of Electrical Engineering, Pukyong National University) ;
  • Lee, Yong-Wook (School of Electrical Engineering, Pukyong National University)
  • 노태규 (부경대학교 전기공학과) ;
  • 김영호 (부경대학교 전기공학과) ;
  • 이용욱 (부경대학교 전기공학과)
  • Received : 2012.10.18
  • Accepted : 2013.02.14
  • Published : 2013.03.31

Abstract

In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

Keywords

References

  1. B. Sutapun, M. Tabib-Azar and A. Kazemi, Sens. Actuators B 60, 27 (1999). https://doi.org/10.1016/S0925-4005(99)00240-3
  2. M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart and M. Maklad, IEEE Photon. Technol. Lett. 19, 255 (2007).
  3. X. Wei, T. Wei, H. Xiao and Y. S. Lina, Sens. Actuators B 134, 687 (2008). https://doi.org/10.1016/j.snb.2008.06.018
  4. C.-L. Tien, H.-W. Chen, W.-F. Liu, S.-S. Jyu, S.-W. Lin and Y.-S. Lin, Thin Solid Flims 516, 5360 (2008). https://doi.org/10.1016/j.tsf.2007.07.045
  5. C. Caucheteur, M. Debliquy, D. Lahem and P. Mégret, IEEE Photon. Technol. Lett. 20, 96 (2008). https://doi.org/10.1109/LPT.2007.912557
  6. C. E. Garrett and K. Prasad, Advanced Synthesis and Catalysis 346, 889 (2004). https://doi.org/10.1002/adsc.200404071
  7. K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik and Y.-I. Yoon, IEEE Sens. J. 7, 1767 (2007). https://doi.org/10.1109/JSEN.2007.909924
  8. M. Yang, H. Liu, D. Zhang and X. Tong, Sens. Actuators B 149, 161 (2010). https://doi.org/10.1016/j.snb.2010.06.006
  9. Y. W. Lee, K. J. Han, B. Lee and J. Jung, Opt. Express 11, 3359 (2003). https://doi.org/10.1364/OE.11.003359
  10. Y. W. Lee, K. J. Han, J. Jung and B. Lee, IEEE Photon. Technol. Lett. 16, 2066 (2004). https://doi.org/10.1109/LPT.2004.832601
  11. Y. Kim, T. K. Noh, W. Jang and Y. W. Lee, in Proceedings of 17th Opto-Electronics and Communications Conference, OECC 2012 (Busan, Korea, July 2-6, 2012).
  12. G. Sun, D. S. Moon and Y. Chung, IEEE Photon. Technol. Lett. 19, 2027 (2007). https://doi.org/10.1109/LPT.2007.908775
  13. J. Villatoro and D. Monzon-Hernandez, Opt. Express 13, 5087 (2005). https://doi.org/10.1364/OPEX.13.005087