DOI QR코드

DOI QR Code

Immobilization of the Antarctic Bacillus sp. LX-1 α-Galactosidase on Eudragit L-100 for the Production of a Functional Feed Additive

  • Lee, Jaekoo (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University) ;
  • Park, Inkyung (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University) ;
  • Cho, Jaiesoon (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University)
  • Received : 2012.10.09
  • Accepted : 2012.12.02
  • Published : 2013.04.01

Abstract

Partially purified ${\alpha}$-galactosidase from Bacillus sp. LX-1 was non-covalently immobilized on a reversibly soluble-insoluble polymer, Eudragit L-100, and an immobilization efficiency of 0.93 was obtained. The optimum pH of the free and immobilized enzyme was 6.5 to 7.0 and 7.0, respectively, while there was no change in optimum temperature between the free and immobilized ${\alpha}$-galactosidase. The immobilized ${\alpha}$-galactosidase was reutilized six times without significant loss in activity. The immobilized enzyme showed good storage stability at $37^{\circ}C$, retaining about 50% of its initial activity even after 18 d at this temperature, while the free enzyme was completely inactivated. The immobilization of ${\alpha}$-galactosidase from Bacillus sp. LX-1 on Eudragit L-100 may be a promising strategy for removal of ${\alpha}$-galacto-oligosaccharides such as raffinose and stachyose from soybean meal and other legume in feed industry.

Keywords

References

  1. Ai, Z., Z. Jiang, L. Li, W. Deng, I. Kusakabe and H. Li. 2005. Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochem. 40:2707-2714. https://doi.org/10.1016/j.procbio.2004.12.006
  2. Anderson, R. L. and W. J. Wolf. 1995. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J. Nutr. 125:581S-588S.
  3. Bayraktar, H., M. Serilmez, T. Karkas, E. B. Celem and S. Onal. 2011. Immobilization and stabilization of $\alpha$-galactosidase on Sepabeads EC-EA and EC-HA. Int. J. Biol. Macromol. 49:855-860. https://doi.org/10.1016/j.ijbiomac.2011.08.009
  4. Bora, U., K. Kannan and P. Nahar. 2005. A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules. J. Membr. Sci. 250:215-222. https://doi.org/10.1016/j.memsci.2004.10.028
  5. Celem, E. B. and S. Onal. 2009. Immobilization of phytase on epoxy-activated Sepabead EC-EP for the hydrolysis of soymilk phytate. J. Mol. Cat. B: Enzym. 61:150-156. https://doi.org/10.1016/j.molcatb.2009.06.001
  6. Cong, L., R. Kaul, U. Dissing and B. Mattiasson. 1995. A model study on Eudragit and polyethyleneimine as soluble carriers of $\alpha$-amylase for repeated hydrolysis of starch. J. Biotechnol. 42:75-84. https://doi.org/10.1016/0168-1656(95)00068-2
  7. De Lumen, O. B. 1992. Molecular strategies to improve protein quality and reduce flatulence in legumes. Food Struct. 11:33-46.
  8. Falkoski, D. L., V. M. Guimaraes, M. V. de Queiroz, E. F. de Araujo, M. N. de Almeida, E. G. de Barros and S. T. de Rezende. 2009. Covalent immobilization of $\alpha$-galactosidase from Penicillium griseoroseum and its application in oligosaccharides hydrolysis. Appl. Biochem. Biotechnol. 158:540-551. https://doi.org/10.1007/s12010-008-8387-9
  9. Francesch, M. and A. M. Perez-Vendrell. 1997. Recent studies on enzyme application in animal feeding. Cahiers Options Mediterraneennes. 26:149-159.
  10. Gaur, R., Lata and S. K. Khare. 2005. Immobilization of xylan-degrading enzymes from Scytalidium thermophilum on Eudragit L-100. World J. Microbiol. Biotechnol. 21:1123-1128. https://doi.org/10.1007/s11274-005-0080-3
  11. Ghazi, S., J. A. Rooke and H. Galbraith. 2003. Improvement of the nutritive value of soybean meal by protease and $\alpha$-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poult. Sci. 44:410-418. https://doi.org/10.1080/00071660310001598283
  12. Gote, M., H. Umalkar, I. Khan and J. Khire. 2004. Thermostable $\alpha$-galactosidase from Bacillus stearothermophilus and its application in the removal of flatulence causing from soymilk. Process Biochem. 39:1723-1729. https://doi.org/10.1016/j.procbio.2003.07.008
  13. Karr-Lilienthal, L. K., C. T. Kadzere, C. M. Grieshop and G. C. Fahey Jr. 2005. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest. Prod. Sci. 97:1-12. https://doi.org/10.1016/j.livprodsci.2005.01.015
  14. Lee, J., I. Park and J. Cho. 2012. Production and partial characterization of $\alpha$-galactosidase activity from an Antarctic bacterial isolate, Bacillus LX-1. Afr. J. Biotechnol. 11:12396-12405.
  15. Monica, D., T. Vintila, V. O. Beatrice and P. Gabriela. 2008. Stabilization of microbial enzymatic preparations used in feed industry. Lucrari stiintifice Zootehnie si Biotehnologii 41:69-72.
  16. Naumov, D. G. 2004. Phylogenetic analysis of $\alpha$-galactosidases of the GH27 family. Mol Biol. (Mosk). 38:463-476.
  17. Okutucu, B., E. B. Celem and S. Onal. 2010. Immobilization of $\alpha$-galactosidase on galactose-containing polymeric beads. Enzyme Microb. Technol. 46:200-205. https://doi.org/10.1016/j.enzmictec.2009.12.005
  18. Onal, S. and A. Telefoncu. 2003a. Comparison of chitin and Amberlite IRA-938 for alpha-galactosidase immobilization. Artif Cells Blood Substit. Immobil. Biotechnol. 31:19-33. https://doi.org/10.1081/BIO-120018001
  19. Onal, S. and A. Telefoncu. 2003b. Preparation and properties of $\alpha$-galactosidase chemically attached to activated chitin. Artif Cells Blood Substit. Immobil. Biotechnol. 31:339-355. https://doi.org/10.1081/BIO-120023163
  20. Prashanth, S. J. and V. H. Mulimani. 2005. Soymilk oligosaccharide hydrolysis by Aspergillus oryzae $\alpha$-galactosidase immobilized in calcium alginate. Process Biochem. 40:1199-1205. https://doi.org/10.1016/j.procbio.2004.04.011
  21. Roy, I., A. Gupta, S. K. Khare, V. S. Bisaria and M. N. Gupta. 2003. Immobilization of xylan-degrading enzymes from Melanocarpus albomyces IIS 68 on the smart polymer Eudragit L-100. Appl. Microbiol. Biotechnol. 61:309-313. https://doi.org/10.1007/s00253-002-1213-3
  22. Sanjay, G. and S. Sugunan. 2005. Immobilization of $\alpha$-amylase onto K-10 montmorillonite: characterization and comparison of activity in a batch and a fixed-bed reactor. Clay Minerals. 40:499-510. https://doi.org/10.1180/0009855054040187
  23. Sardar, M., I. Roy and M. Gupta. 2000. Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer $Eudragit^{TM}$ L-100. Enzyme Microb. Technol. 27:672-679. https://doi.org/10.1016/S0141-0229(00)00257-X
  24. Schasteen, C. S., J. Wu, M. G. Schulz and C. M. Parsons. 2007. Correlation of an immobilized digestive enzyme assay with poultry true amino acid digestibility for soybean meal. Poult. Sci. 86:343-348. https://doi.org/10.1093/ps/86.2.343
  25. Sharma, S., P. Kaur, A. Jain, M. R. Rajeswari and M. N. Gupta. 2003. A smart bioconjugate of chymotrypsin. Biomacromolecules 4:330-336. https://doi.org/10.1021/bm0256799
  26. Silva, C. J. S. M., Q. Zhang, J. Shen and A. Cavaco-Paulo. 2006. Immobilization of proteases with a water soluble-insoluble reversible polymer for treatment of wool. Enzyme Microb. Technol. 39:634-640. https://doi.org/10.1016/j.enzmictec.2005.11.016
  27. Steggerda, F. R., E. A. Richard and J. J. Rackis. 1966. Effect of various soybean products on flatulence in the adult man. Proc. Soc. Exp. Biol. Med. 121:1235-1239. https://doi.org/10.3181/00379727-121-31014
  28. Stein, H. H., L. L. Berger, J. K. Drackley, G. C. Fahey Jr, D. C. Hernot and C. M. Parsons. 2008. Nutritional properties and feeding values of soybeans and their coproducts. In: Soybeans, Chemistry, Production, Processing, and Utilization (Ed. A. Johnson, P. J. White and R. Galloway). AOCS Press, Urbana, IL, USA. pp. 613-660.
  29. Suarez, F. L., J. Springfield, J. K. Furne, T. T. Lohrmann, P. S. Kerr and M. D. Levitt. 1999. Gas production in humans ingesting a soybean meal derived from beans naturally low in oligosaccharides. Am. J. Clin. Nutr. 69:135-139.
  30. Sulabo, R. C., C. K. Jones, M. D. Tokach, R. D. Goodband, S. S. Dritz, D. R. Campbell, B. W. Ratliff, J. M. DeRouchey and J. L. Nelssen. 2011. Factors affecting storage stability of various commercial phytase sources. J. Anim. Sci. 89:4262-4271. https://doi.org/10.2527/jas.2011-3948
  31. Thippeswamy, S. and V. H. Mulimani. 2002. Enzymatic degradation of raffinose family oligosaccharides in soymilk by immobilized-galactosidase from Gibberella fujikuroi. Process Biochem. 38:635-640. https://doi.org/10.1016/S0032-9592(02)00010-9
  32. Venkatesh, D. N., A. K. Reddy, M. K. Samanta and B. Suresh. 2009. Development and in vitro evaluation of colonic drug delivery systems for tegaserod maleate. Asian J. Pharmaceutics. 3:50-53. https://doi.org/10.4103/0973-8398.49175
  33. Vila, B. and J. Mascarell. 1999. $\alpha$-Galactosides in soybean meal: can enzyme help. Feed Inter. 6:24-29.
  34. Zhang, Y., J. Xu, Z. Yuan, H. Xu and Q. Yu. 2010. Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour. Technol. 101:3153-3158. https://doi.org/10.1016/j.biortech.2009.12.080

Cited by

  1. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides vol.20, pp.8, 2015, https://doi.org/10.3390/molecules200813550
  2. An update on smart biocatalysts for industrial and biomedical applications vol.15, pp.139, 2018, https://doi.org/10.1098/rsif.2018.0062
  3. pp.0233111X, 2018, https://doi.org/10.1002/jobm.201800215
  4. Enhanced elimination of non‐digestible oligosaccharides from soy milk by immobilized α‐galactosidase: A comparative analysis vol.43, pp.11, 2013, https://doi.org/10.1111/jfbc.13005
  5. Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry vol.47, pp.1, 2013, https://doi.org/10.1080/21691401.2019.1626414