DOI QR코드

DOI QR Code

The Effect of Plant Extracts on In-vitro Ruminal Fermentation, Methanogenesis and Methane-related Microbes in the Rumen

  • Kim, E.T. (Division of Applied Life Science (BK21 program), Gyeongsang National University (Institute of Agriculture and Life Science)) ;
  • Min, K.S. (Animal Biotechnology, GSBIT, Hankyong National University) ;
  • Kim, C.H. (School of Animal Life and Environment Science, Hankyong National University) ;
  • Moon, Y.H. (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Kim, S.C. (Department of Animal Science, Gyeongsang National University (Institute of Agriculture and Life Science)) ;
  • Lee, Sung-Sill (Division of Applied Life Science (BK21 program), Gyeongsang National University (Institute of Agriculture and Life Science))
  • Received : 2012.09.06
  • Accepted : 2012.10.25
  • Published : 2013.04.01

Abstract

The effect on methanogens attached to the surface of rumen ciliate protozoa by the addition of plant extracts (pine needles and ginkgo leaves) was studied with particular reference to their effectiveness for decreasing methane emission. The plant extracts (pine needles and ginkgo leaves) were added to an in vitro fermentation incubated with rumen fluid. The microbial population including bacteria, ciliated-associated methanogen, four different groups of methanogens and Fibrobacter succinogenes were quantified by using the real-time PCR. Gas profiles including methane, carbon dioxide and hydrogen, and runinal fermentation characteristics were observed in vitro. The methane emission from samples with an addition of individual juices from pine needles, ginkgo leaves and 70% ethanol extract from ginko leaves was significantly lower (p<0.05, 27.1, 28.1 and 28.1 vs 34.0 ml/g DM) than that of the control, respectively. Total VFAs in samples with an addition of any of the plant extracts were significantly lower than that of the control (p<0.05) as well. The order Methanococcales and the order Methanosarcinales were not detected by using PCR in any incubated mixtures. The ciliate-associated methanogens population decreased from 25% to 49% in the plant extacts as compared to control. We speculate that the supplementation of juice from pine needles and ginkgo leaves extract (70% ethanol extract) decreased the protozoa population resulting in a reduction of methane emission in the rumen and thus inhibiting methanogenesis. The order Methanobacteriales community was affected by addition of all plant extracts and decreased to less than the control, while the order Methanomicrobiales population showed an increase to more than that of the control. The F. succinogenes, the major fibrolytic microorganism, population in all added plant extracts was increased to greater than that of the control. In conclusion, pine needles and ginkgo leaves extracts appear to have properties that decrease methanogenesis by inhibiting protozoa species and may have a potential for use as additives for ruminants.

Keywords

References

  1. Behlke, E. J. 2007. Attenuation of ruminal methanogenesis. Theses and Dissertations in Animal Science, University of Nebraska-Lincoln, USA.
  2. Broudiscoua, L. P., Y. Papon and A. F. Broudiscou. 2000. Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Anim. Feed Sci. Technol. 87:263-277. https://doi.org/10.1016/S0377-8401(00)00193-0
  3. Choi, M. Y., E. J. Choi, E. Lee, T. J. Rhim, B. C. Cha and H. J. Park. 1997. Antimicrobial activities of pine needle. Korean J. Appl. Microbiol. Biotechnol. 25:293-297.
  4. Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  5. Denman S. E., N. W. Tomkins and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  6. Erwin, E. S., G. J. Marco and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  7. IPCC (Intergovermental Panel on Climate Change). 2007. IPCC Fourth Assessment Report.
  8. Irbis, C. and K. Ushida. 2004. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J. Gen. Appl. Microbiol. 50:203-212. https://doi.org/10.2323/jgam.50.203
  9. Jo, I. H., S. Hwangbo, K. H. Jun, H. B. Song, J. H. Ahn and J. S. Lee. 1997. The effect of roughage source on voluntary feed intake and digestibility in Korean native goats. J. Korean Grassl. Sci. 17:82-88.
  10. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  11. Kang, Y. H., Y. K. Park, S. R. Oh and K. D. Moon. 1995. Studies on the physiological funtionality of pine needle and mugwort extracts. Korean J. Food Sci. Technol. 27:978-984.
  12. Kim, E. T., C. -H. Kim, K. -S. Min and S. S. Lee. 2012. Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian-Aust. J. Anim. Sci. 25:806-811. https://doi.org/10.5713/ajas.2011.11447
  13. Kim, H. J., J. Y. Cha, M. L. Choi and Y. S. Cho. 2000. Antioxidative activities by water-soluble extracts of Morus alba and Cudrania tricuspidata. J. Korean Soc. Agric. Chem. Biotechnol. 43:148-152.
  14. Kim, Y. S. and D. H. Shin. 2005. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol. 22:37-45. https://doi.org/10.1016/j.fm.2004.05.002
  15. Lee, I. H., Y. Shim, S. H. Choi, J. Y. Park, S. W. Han, J. Y. Song and S. J. Yoon. 2006. A study on the antimicrobial effect of ginkgo bilba leaves extracts according to concentrations of ethanol for Staphylococcus aureus. Korean J. Biotechnol. Bioeng. 21:312-316.
  16. Luton, P. E., J. M. Wayne, R. J. Sharp and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521-3530.
  17. Martin, S. A. and J. M. Macy. 1985. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J. Anim. Sci. 60:544-550.
  18. McCrabb, G. J., K. T. Berger, T. Magner, T. May and R. A. Hunter. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 48:323-329. https://doi.org/10.1071/A96119
  19. Medlin, L., H. J. Elwood, S. Stickel and M. L. Sogin. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 71:491-499. https://doi.org/10.1016/0378-1119(88)90066-2
  20. Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust. J. Anim. Sci. 21:144-154. https://doi.org/10.5713/ajas.2008.r01
  21. Ohene-Adjei, S., A. V. Chaves, T. A. McAllister, C. Benchaar, R. M. Teather and R. J. Forster. 2008. Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb. Ecol. 56:234-242. https://doi.org/10.1007/s00248-007-9340-0
  22. Patra, A. K., D. N. Kamra and N. Agarwal. 2006. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 128:276-291. https://doi.org/10.1016/j.anifeedsci.2005.11.001
  23. Patra, A. K., D. N. Kamra and N. Agarwal. 2010. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric. 90:511-520.
  24. Pfister, J. A., D. C. Adams, R. D. Wiedmeier and R. G. Cates. 1992. Adverse effects of pine needles on aspects of digestive performance in cattle. J. Range Manage. 45:528-533. https://doi.org/10.2307/4002565
  25. SAS. 2002. SAS user's guide: Statistics. SAS Inst. Inc., Cary, NC, USA.
  26. Stumm, C. K., H. J. Gijzen and G. D. Vogels. 1982. Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 47:95-99. https://doi.org/10.1079/BJN19820013
  27. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  28. Takahashi, J., B. Mwenya, B. Santoso, C. Sar, K. Umetsu, T. Kishimoto, K. Nishizaki, K. Kimura and O. Hamamoto. 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Aust. J. Anim. Sci. 18:1199-1208. https://doi.org/10.5713/ajas.2005.1199
  29. Teferedegne, B. 2000. New perspective on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 59:209-214. https://doi.org/10.1017/S0029665100000239
  30. Van Nevel, C. J. and D. I. Demeyer. 1988. Manipulation of rumen fermentation. In The Rumen Microbial Ecosystem (Ed. P. N. Hobson) p. 387-443. Elsevier Science Publishers, New York, USA.
  31. Van Nevel, C. J. and D. I. Demeyer. 1995. Feed additives and other interventions for decreasing methane emissions. In: Biotechnology in Animal Feeds and Animal Feeding (Ed. R. J. Wallace and A. Chesson). VCH, Weinheim, p 329-349.
  32. Van Nevel, C. J. and D. I. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assessm. 42:73-97. https://doi.org/10.1007/BF00394043
  33. Vogels, G. D., W. F. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612.
  34. Wang, C. J., S. P. Wang and H. Zhou. 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 148:157-166. https://doi.org/10.1016/j.anifeedsci.2008.03.008
  35. Yoo, J. H., J. Y. Cha, Y. K. Jeong, K. T. Chung and Y. S. Cho. 2004. Antioxidative Effects of Pine (Pinus denstifora) Needle Extracts. J. Life Sci. 14:863-867. https://doi.org/10.5352/JLS.2004.14.5.863
  36. Yu, Y., C. Lee, J. Kim and S. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89:670-679. https://doi.org/10.1002/bit.20347

Cited by

  1. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls vol.31, pp.10, 2018, https://doi.org/10.5713/ajas.18.0125
  2. Gut Microbiota of Wild and Captive Alpine Musk Deer ( Moschus chrysogaster ) vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.03156
  3. Fitting of the In Vitro Gas Production Technique to the Study of High Concentrate Diets vol.10, pp.10, 2013, https://doi.org/10.3390/ani10101935
  4. Seasonal diets supersede host species in shaping the distal gut microbiota of Yaks and Tibetan sheep vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-99351-4