DOI QR코드

DOI QR Code

Polymorphisms in the Promoter Region of the Chinese Bovine PPARGC1A Gene

  • Li, M.J. (College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Liu, M. (College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Liu, D. (College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Lan, X.Y. (College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Lei, C.Z. (College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Yang, D.Y. (Department of Biology, Dezhou University) ;
  • Chen, H. (College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture)
  • Received : 2012.10.08
  • Accepted : 2012.11.19
  • Published : 2013.04.01

Abstract

The peroxisome proliferator-activated receptor gamma coactivator-1 alpha protein, encoded by the PPARGC1A gene, plays an important role in energy homeostasis. The genetic variations within the PPARGC1A gene promoter region were scanned in 808 Chinese native bovines belonging to three cattle breeds and yaks. A total of 6 SNPs and one 4 bp insertion variation in the promoter region of the bovine PPARGC1A gene were identified: SNP -259 T>A, -301_-298insCTTT, -915 A>G, -1175 T>G, -1590 C>T, -1665 C>T and -1690 G>A, which are in the binding sites of some important transcription factors: sex-determining region Y (SRY), myeloid-specific zinc finger-1 (MZF-1) and octamer factor 1(Oct-1). It is expected that these polymorphisms may regulate PPARGC1A gene transcription and might have consequences at a regulatory level.

Keywords

References

  1. Bansal, A., D. van den Boom, S. Kammerer, C. Honisch, G. Adam, C. R. Cantor, P. Kleyn and A. Braun. 2002. Association testing by DNA pooling: An effective initial screen. Proc. Natl. Acad. Sci. USA. 99:16871-16874. https://doi.org/10.1073/pnas.262671399
  2. Barroso, I., J. Luan, M. S. Sandhu, P. W. Franks, V. Crowley, A. J. Schafer, S. O'Rahilly and N. J. Wareham. 2006. Meta-analysis of the gly482ser variant in ppargc1a in type 2 diabetes and related phenotypes. Diabetologia 49:501-505. https://doi.org/10.1007/s00125-005-0130-2
  3. Bhat, A., A. Koul, E. Rai, S. Sharma, M. K. Dhar and R. N. Bamezai. 2007. Pgc-1 alpha thr394thr and gly482ser variants are significantly associated with t2dm in two north indian populations: A replicate case-control study. Hum. Genet. 121:609-614. https://doi.org/10.1007/s00439-007-0352-0
  4. Geloneze, S. R., B. Geloneze, J. Morari, J. R. Matos-Souza, M. M. Lima, E. A. Chaim, J. C. Pareja and L. A. Velloso. 2012. Pgc1 alpha gene gly482ser polymorphism predicts improved metabolic, inflammatory and vascular outcomes following bariatric surgery. Int. J. Obes. 36:363-368.
  5. Hromas, R., J. Morris, K. Cornetta, D. Berebitsky, A. Davidson, M. Sha, G. Sledge and F. Rauscher. 1995. Aberrant expression of the myeloid zinc finger gene, mzf-1, is oncogenic. Cancer Res. 55:3610-3614.
  6. Khatib, H., I. Zaitoun, J. Wiebelhaus-Finger, Y. M. Chang and G. J. Rosa. 2007. The association of bovine ppargc1a and opn genes with milk composition in two independent holstein cattle populations. J. Dairy Sci. 90:2966-2970. https://doi.org/10.3168/jds.2006-812
  7. Komisarek, J. and Z. Dorynek. 2009. Effect of abcg2, ppargc1a, olr1 and scd1 gene polymorphism on estimated breeding values for functional and production traits in polish holstein-friesian bulls. J. Appl. Genet. 50:125-132. https://doi.org/10.1007/BF03195663
  8. Kowalewska-Luczak, I., H. Kulig and M. Kosobucki. 2011. Effect of polymorphism in the ppargc1a gene on the milk production traits of polish holstein-friesian cows. Tieraerztl. Umsch. 66:147-150.
  9. Lin, J. D., C. Handschin and B. M. Spiegelman. 2005. Metabolic control through the pgc-1 family of transcription coactivators. Cell Metab. 1:361-370. https://doi.org/10.1016/j.cmet.2005.05.004
  10. Povel, C. M., E. J. Feskens, S. Imholz, E. E. Blaak, J. M. Boer and M. E. Dolle. 2010. Glucose levels and genetic variants across transcriptional pathways: Interaction effects with bmi. Int. J. Obes. 34:840-845. https://doi.org/10.1038/ijo.2009.302
  11. Puigserver, P. 2005. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator pgc1-alpha. Int. J. Obes. 29:S5-S9. https://doi.org/10.1038/sj.ijo.0802905
  12. Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright and B. M. Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839. https://doi.org/10.1016/S0092-8674(00)81410-5
  13. Ryu, J., Y. Kim, C. Kim, J. Kim and C. Lee. 2012. Association of bovine carcass phenotypes with genes in an adaptive thermogenesis pathway. Mol. Biol. Rep. 39:1441-1445. https://doi.org/10.1007/s11033-011-0880-5
  14. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor Laboratory Press, New York.
  15. Schennink, A., H. Bovenhuis, K. M. Leon-Kloosterziel, J. A. van Arendonk and M. H. Visker. 2009. Effect of polymorphisms in the fasn, olr1, ppargc1a, prl and stat5a genes on bovine milk-fat composition. Anim. Genet. 40:909-916. https://doi.org/10.1111/j.1365-2052.2009.01940.x
  16. Soria, L. A., P. M. Corva, A. Branda Sica, E. L. Villarreal, L. M. Melucci, C. A. Mezzadra, J. Papaleo Mazzucco, G. Fernandez Macedo, C. Silvestro, A. Schor and M. C. Miquel. 2009. Association of a novel polymorphism in the bovine ppargc1a gene with growth, slaughter and meat quality traits in brangus steers. Mol. Cell. Probes. 23:304-308. https://doi.org/10.1016/j.mcp.2009.07.007
  17. Sytina, E. V. and E. V. Pankratova. 2003. Transcription factor oct-1: Plasticity and multiplicity of functions. Mol. Biol. 37:637-648. https://doi.org/10.1023/A:1026068506793
  18. Turner, M. E., D. Ely, J. Prokop and A. Milsted. 2011. Sry, more than testis determination? Am. J. Physiol-Reg. Integr. Comp. Physiol. 301:R561-R571. https://doi.org/10.1152/ajpregu.00645.2010
  19. Weikard, R., C. Kuhn, T. Goldammer, G. Freyer and M. Schwerin. 2005. The bovine ppargc1a gene: Molecular characterization and association of an snp with variation of milk fat synthesis. Physiol. Genomics 21:1-13. https://doi.org/10.1152/physiolgenomics.00103.2004
  20. Zhang, C. L., Y. H. Wang, H. Chen, X. Y. Lan and C. Z. Lei. 2007. Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365:286-287. https://doi.org/10.1016/j.ab.2007.03.023
  21. Zhang, Q., H. Chen, S. Zhao, L. Zhang, L. Zhang and X. Wang. 2010. Polymorphisms in the promoter region of bovine prkab1 gene. Mol. Biol. Rep. 37:435-440. https://doi.org/10.1007/s11033-009-9612-5
  22. Zhang, Q., S. Zhao, H. Chen, L. Zhang, L. Zhang, F. Li and X. Wang. 2011. Snp discovery and haplotype analysis in the bovine prkaa2 gene. Mol. Biol. Rep. 38:1551-1556. https://doi.org/10.1007/s11033-010-0263-3

Cited by

  1. Haplotype-based interaction of the PPARGC1A and UCP1 genes is associated with impaired fasting glucose or type 2 diabetes mellitus vol.96, pp.23, 2017, https://doi.org/10.1097/MD.0000000000006941
  2. Detection of genetic variation and activity analysis of the promoter region of the cattle tRNA-modified gene TRDMT1 vol.64, pp.1, 2013, https://doi.org/10.5194/aab-64-147-2021