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A NOTE ON THE BIVARIATE PARETO

DISTRIBUTION

Bong Sik Cho1 and Sun Young Jung2

Abstract. The Fisher information matrix plays a significant role in
statistical inference in connection with estimation and properties of
variance of estimators. Using Bivariate Lomax distribution, we can
define “statistical model” and drive the Fisher information matrix
of Bivariate Lomax distribution. In this paper, we correct the wrong
of the paper [7].

1. Introduction

Information geometry is the differential geometric study of the man-
ifold of probability measures or probability density functions. Recently,
information geometric methods have been applied to many areas of
the study of estimating functions and nuisance parameter, the depen-
dency of Bayesian predictive distribution, the class of invariant priors
for Bayesian inference, principal component analysis, independent com-
ponent analysis and blind source separation.

Rao (1945) first noticed the importance of the differential-geometrical
approach and introduced the Riemannian metric in a statistical mani-
fold by using the Fisher information matrix and calculated the geodesic
distance between two distributions for various statistical models. Since
then many researchers have tried to obtain the properties of the Rie-
mannian manifold of a statistical model. Efron (1975) elucidated the
meaning of curvature for asymptotic statistical inference and pointed
that the statistical curvature plays a fundamental role in the higher or-
der asymptotic theory of statistical inference. Amari (1985) remarked
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that the two dimensional parameter space of the family of one dimen-
sional normal distribution is a space of negative constant curvature and
studied the -geometry of the families of the gamma, Gaussian, Mckey
bivariate gamma and the Freund bivariate exponential. Recently, Adbel-
All et al. (2003), Kass (1989), Kass and Vos (1997), Murray and Rice
(1993) studied the probability density function from the view point of
information geometry and use the geometric metrics to give a new de-
scription to the statistical distribution. Bivariate Pareto distributions
are popular models in many applied areas. They are very versatile and
a variety of uncertainties can be usefully modeled by them.

2. Bivariate Pareto distribution

The bivariate Lomax distribution with the joint survivor function has
the form

(2.1) F (x, y) =
1

(1 + θx+ φy)a

then
∂F

∂x
=

∂

∂x
(1 + θx+ φy)−a = −aθ(1 + θx+ φy)−a−1

∂2F

∂x∂y
= (−a)(−a− 1)(θφ)(1 + θx+ φy)−a−2

and the bivariate Lomax distribution has the joint pdf of the form

(2.2) f(x, y) =
∂2F

∂x∂y
=

a(a+ 1)θφ

(1 + θx+ φy)a+2

respectively, for x > 0, y > 0, θ > 0, φ > 0 and a > 0.
For a given observation (x, y), the Fisher information matrix is de-

fined by

(Ijk) =

{
E

(
∂ logL(θ)

∂θj

∂ logL(θ)

∂θk

)}
for j = 1, 2, · · · , p and k = 1, 2, · · · , p, where L(θ) = f(x, y) and
θ = (θ1, θ2, · · · , θp) are the parameters of the pdf f . It has the mean-
ing “information about the parameters θ contained in the observation
(x, y).” The information matrix plays a significant role in statistical in-
ference in connection with estimation, sufficiency and properties of vari-
ances of estimators. It is related to the covariance matrix of the estimate
of θ.
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From (2.2), the log-likelihood function is

logL(a, θ, φ) = log{a(a+ 1)θφ} − (a+ 2) log(1 + θx+ φy).

Taking the coordinates (a, θ, φ), the first-order derivatives are:

∂ logL

∂θ
=

1

θ
− (a+ 2)

x

1 + θx+ φy
,

∂ logL

∂φ
=

1

φ
− (a+ 2)

y

1 + θx+ φy
, and

∂ logL

∂a
=

1

a
+

1

a+ 1
− log(1 + θx+ φy).

The second-order derivatives are:

∂2 logL

∂θ2
= − 1

θ2
+ (a+ 2)

x2

(1 + θx+ φy)2
,

∂2 logL

∂θ∂φ
= (a+ 2)

xy

(1 + θx+ φy)2
,

∂2 logL

∂θ∂a
= − x

1 + θx+ φy
,

∂2 logL

∂φ2
= − 1

φ2
+ (a+ 2)

y2

(1 + θx+ φy)2
,

∂2 logL

∂φ∂a
= − y

1 + θx+ φy
, and

∂2 logL

∂a2
= − 1

a2
− a

(a+ 1)2
.

Using the formula

(2.3) E(XmY n|a) = mn

∫ ∞
0

∫ ∞
0

xm−1yn−1(1 + θx+ φy)−adydx

for a > max{m,n − 1},m < a, n < a + 1 (where denotes the shape
parameter in (2.1)), we can express the element of the Fisher information
matrix as

E

(
−∂

2 logL

∂θ2

)
=

1

θ2
− a(a+ 1)(a+ 2)θφ

3
E(X3Y |a+ 4),

E

(
−∂

2 logL

∂θ∂φ

)
= −a(a+ 1)(a+ 2)θφ

4
E(X2Y 2|a+ 4),

E

(
−∂

2 logL

∂θ∂a

)
=
a(a+ 1)θφ

2
E(X2Y |a+ 3),
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E

(
−∂

2 logL

∂φ2

)
=

1

φ2
− a(a+ 1)(a+ 2)θφ

3
E(XY 3|a+ 4),

E

(
−∂

2 logL

∂φ∂a

)
=
a(a+ 1)θφ

2
E(XY 2|a+ 3), and

E

(
−∂

2 logL

∂a2

)
=

1

a2
+

1

(a+ 1)2
.

Theorem 2.1. If X and Y are jointly distributed according to (2.2)
then

E(XmY n|a) =
mnB(n, a− n)B(m, a−m− n)

θmφn
.

for a > m+ n ≥ 1, where B is a beta function.

Proof. Using the formula (2.3), we can express

E(XmY n|a)

= mn

∫ ∞
0

∫ ∞
0

xm−1yn−1(1 + θx+ φy)−adydx

= mn

∫ ∞
0

∫ ∞
0

xm−1yn−1
(
φ

(
y +

1 + θx

φ

))−a
dydx

= mn

∫ ∞
0

xm−1φ−a
∫ ∞
0

yn−1(y + c)−adydx

= mn

∫ ∞
0

xm−1φ−a
∫ ∞
0

ctn−1(ct+ c)−ac dtdx

= mn

∫ ∞
0

xm−1φ−acn−1−a+1

∫ ∞
0

tn−1(t+ 1)−adtdx

= mn

∫ ∞
0

xm−1φ−acn−a
∫ 1

0

(
z

1− z

)n−1( z

1− z
+ 1

)−a 1

(1− z)2
dzdx

= mn

∫ ∞
0

xm−1φ−acn−a
∫ 1

0
(z)n−1(1− z)a−n−1dzdx

= mn

∫ ∞
0

xm−1φ−acn−aB(n, a− n)dx

= mn

∫ ∞
0

xm−1φ−a
(

1 + θx

φ

)n−a
B(n, a− n)dx
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= mnB(n, a− n)

∫ ∞
0

xm−1φ−a
(
θ

φ

(
x+

1

θ

))n−a
dx

=
mnB(n, a− n)B(m, a−m− n)

θmφn
.

By Theorem 2.1, the expectations above can be calculated as

E(X3Y |a+ 4) =
3B(1, a+ 3)B(3, a)

θ3φ
=

6

θ3φ(a+ 4)(a+ 3)(a+ 2)(a+ 1)
,

E(XY 3|a+ 4) =
3B(3, a+ 1)B(1, a)

θφ3
=

6

θφ3(a+ 4)(a+ 3)(a+ 2)(a+ 1)
,

E(X2Y 2|a+ 4) =
4B(2, a+ 2)B(2, a)

θ2φ2
=

4

θ2φ2(a+ 4)(a+ 3)(a+ 2)(a+ 1)
,

E(X2Y |a+ 3) =
2B(1, a+ 2)B(2, a)

θ2φ
=

2

θ2φ(a+ 3)(a+ 2)(a+ 1)
,

and

E(XY 2|a+ 3) =
2B(2, a+ 1)B(1, a)

θφ2
=

2

θφ2(a+ 3)(a+ 2)(a+ 1)
.

Theorem 2.2. Let M be the family of bivariate Pareto distributions,
then a, θ, φ is a local coordinate system, and M become a 3-manifold.
Thus we can obtain the Fisher information matrix

E

(
−∂

2 logL

∂a2

)
=

1

a2
+

1

(a+ 1)2

E

(
−∂

2 logL

∂a∂θ

)
=

a

θ(a+ 3)(a+ 2)

E

(
−∂

2 logL

∂a∂φ

)
=

a

φ(a+ 3)(a+ 2)

E

(
−∂

2 logL

∂θ2

)
=

1

θ2
− 2a

θ2(a+ 4)(a+ 3)

E

(
−∂

2 logL

∂θ∂φ

)
= − a

θφ(a+ 4)(a+ 3)

E

(
−∂

2 logL

∂φ2

)
=

1

φ2
− 2a

φ2(a+ 4)(a+ 3)
.
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3. Conclusions

The Fisher information matrix(FIM) measures the curvature of the
log-likelihood surface. Flat surfaces around the maximum do not inspire
high confidence in estimated parameter values, while steep surfaces lead
to sharp estimates. It is important to know the shape of a statistical
model in the whole set of probability distributions. The information
content is large if the FIM is large, because the likelihood is sharped
peaked. we are sure that the maximum likelihood(ML) solution is a
good estimate. If the curvature is small, then the likelihood probability
distribution is very broad. So the ML estimate is not as good because
the variance is very large.
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