DOI QR코드

DOI QR Code

Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026

  • Chang, Jiwon (Department of Biology, Kyungpook National University) ;
  • Hong, Ji Won (Department of Biology, Kyungpook National University) ;
  • Chae, Hyunsik (Department of Biology, Kyungpook National University) ;
  • Kim, Han Soon (Department of Biology, Kyungpook National University) ;
  • Park, Kyung Mok (Department of Pharmaceutical Engineering, Dongshin University) ;
  • Lee, Kyoung In (Biotechnology Industrialization Center, Dongshin University) ;
  • Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
  • Received : 2013.01.15
  • Accepted : 2013.02.22
  • Published : 2013.03.15

Abstract

A freshwater cyanobacterium, Phormidium autumnale KNUA026, was isolated from puddles of icy water in Gyeongsan City, South Korea and its potential as a biofuel feedstock was investigated. Maximal growth was obtained when the culture was incubated at $25^{\circ}C$ and around pH 9.0. The total lipid content of the isolate was approximately 14.0% of dry weight and it was found that strain KNUA026 was able to autotrophically synthesize heptadecane ($C_{17}H_{36}$) which can be directly used as fuel without requiring a transesterification step. As this benthic cyanobacterium was capable of forming thick mats, it could be easily harvested by gravitational settling and this property may reduce the cost of production in commercial applications. Hence, P. autumnale KNUA026 appears to be a promising resource for use in the production of microalgae-based biofuels.

Keywords

References

  1. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  2. Choi, G. -G., Bae, M. -S., Ahn, C. -Y. & Oh, H. -M. 2008. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Lett. 30:87-92.
  3. Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification method. Prog. Energ. Combust. Sci. 31:466-487. https://doi.org/10.1016/j.pecs.2005.09.001
  4. Demirbas, A. 2007. Recent developments in biodiesel fuels. Int. J. Green Energy 4:15-26. https://doi.org/10.1080/15435070601015395
  5. De Souza S. P., Pacca, S., De Avila, M. T. & Borges, J. L. B. 2010. Greenhouse gas emissions and energy balance of palm oil biofuel. Renew. Energy 35:2552-2561. https://doi.org/10.1016/j.renene.2010.03.028
  6. Esson, D., Wood, S. A. & Packer, M. A. 2011. Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors. AMB Express 1:19. https://doi.org/10.1186/2191-0855-1-19
  7. Felsenstein, J. 1985. Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  8. Guschina, I. A. & Harwood, J. L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45:160-186. https://doi.org/10.1016/j.plipres.2006.01.001
  9. Heath, M. W., Wood, S. A. & Ryan, K. G. 2010. Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol. Ecol. 73:95-109.
  10. Huang, G., Chen, F., Wei, D., Zhang, X. & Chen, G. 2010. Biodiesel production by microalgal biotechnology. Appl. Energy 87:38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
  11. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  12. Johnson, M. B. & Wen, Z. 2009. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23:5179-5183. https://doi.org/10.1021/ef900704h
  13. Jorquera, O., Kiperstok, A., Sales, E. A., Embiruçu, M. & Ghirardi, M. L. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101:1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
  14. Knothe, G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36:364-373. https://doi.org/10.1016/j.pecs.2009.11.004
  15. Lardon, L., Helias, A., Sialve, B., Steyera, J. -P. & Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43:6475-6481. https://doi.org/10.1021/es900705j
  16. Meher, L. C., Vidya Sagar, D. & Naik, S. N. 2006. Technical aspects of biodiesel production by transesterification: a review. Renew. Sust. Energy Rev. 10:248-268. https://doi.org/10.1016/j.rser.2004.09.002
  17. Metzger, P. & Largeau, C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66:486-496. https://doi.org/10.1007/s00253-004-1779-z
  18. Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
  19. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61. https://doi.org/10.1099/00221287-111-1-1
  20. Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  21. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. & Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1:20-43. https://doi.org/10.1007/s12155-008-9008-8
  22. Schirmer, A., Rude, M. A., Li, X., Popova, E. & Del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329:559-562. https://doi.org/10.1126/science.1187936
  23. Sims, R. E. H., Mabee, W., Saddler, J. N. & Talyor, M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101:1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
  24. Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Tan, X., Yao, L., Gao, Q., Wang, W., Qi, F. & Lu, X. 2011. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab. Eng. 13:169-176. https://doi.org/10.1016/j.ymben.2011.01.001
  26. Xin, L., Hu, H. Y., Ke, G. & Sun, Y. X. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101:5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
  27. Yeo, I., Jeong, J., Cho, Y., Hong, J., Yoon, H. -S., Kim, S. H. & Kim, S. 2011. Characterization and comparison of biodiesels made from Korean freshwater algae. Bull. Korean Chem. Soc. 32:2830-2832. https://doi.org/10.5012/bkcs.2011.32.8.2830

Cited by

  1. Algal biofuels in Canada: Status and potential vol.44, 2015, https://doi.org/10.1016/j.rser.2014.12.024
  2. Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011 vol.477, pp.3, 2016, https://doi.org/10.1016/j.bbrc.2016.06.090
  3. Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2015, https://doi.org/10.1007/s11120-014-9974-y
  4. Characterization of fatty acid components from Tetradesmus obliquus KNUA019 (Chlorophyta, Scenedesmaceae) for a resource of biofuel production vol.42, pp.3, 2013, https://doi.org/10.1007/s40415-019-00556-9
  5. Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources vol.6, pp.7, 2013, https://doi.org/10.1016/j.heliyon.2020.e04447