References
- Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Choi, G. -G., Bae, M. -S., Ahn, C. -Y. & Oh, H. -M. 2008. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Lett. 30:87-92.
- Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification method. Prog. Energ. Combust. Sci. 31:466-487. https://doi.org/10.1016/j.pecs.2005.09.001
- Demirbas, A. 2007. Recent developments in biodiesel fuels. Int. J. Green Energy 4:15-26. https://doi.org/10.1080/15435070601015395
- De Souza S. P., Pacca, S., De Avila, M. T. & Borges, J. L. B. 2010. Greenhouse gas emissions and energy balance of palm oil biofuel. Renew. Energy 35:2552-2561. https://doi.org/10.1016/j.renene.2010.03.028
- Esson, D., Wood, S. A. & Packer, M. A. 2011. Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors. AMB Express 1:19. https://doi.org/10.1186/2191-0855-1-19
- Felsenstein, J. 1985. Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
- Guschina, I. A. & Harwood, J. L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45:160-186. https://doi.org/10.1016/j.plipres.2006.01.001
- Heath, M. W., Wood, S. A. & Ryan, K. G. 2010. Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol. Ecol. 73:95-109.
- Huang, G., Chen, F., Wei, D., Zhang, X. & Chen, G. 2010. Biodiesel production by microalgal biotechnology. Appl. Energy 87:38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
- Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
- Johnson, M. B. & Wen, Z. 2009. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23:5179-5183. https://doi.org/10.1021/ef900704h
- Jorquera, O., Kiperstok, A., Sales, E. A., Embiruçu, M. & Ghirardi, M. L. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101:1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
- Knothe, G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36:364-373. https://doi.org/10.1016/j.pecs.2009.11.004
- Lardon, L., Helias, A., Sialve, B., Steyera, J. -P. & Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43:6475-6481. https://doi.org/10.1021/es900705j
- Meher, L. C., Vidya Sagar, D. & Naik, S. N. 2006. Technical aspects of biodiesel production by transesterification: a review. Renew. Sust. Energy Rev. 10:248-268. https://doi.org/10.1016/j.rser.2004.09.002
- Metzger, P. & Largeau, C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66:486-496. https://doi.org/10.1007/s00253-004-1779-z
- Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61. https://doi.org/10.1099/00221287-111-1-1
- Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
- Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. & Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1:20-43. https://doi.org/10.1007/s12155-008-9008-8
- Schirmer, A., Rude, M. A., Li, X., Popova, E. & Del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329:559-562. https://doi.org/10.1126/science.1187936
- Sims, R. E. H., Mabee, W., Saddler, J. N. & Talyor, M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101:1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
- Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
- Tan, X., Yao, L., Gao, Q., Wang, W., Qi, F. & Lu, X. 2011. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab. Eng. 13:169-176. https://doi.org/10.1016/j.ymben.2011.01.001
- Xin, L., Hu, H. Y., Ke, G. & Sun, Y. X. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101:5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
- Yeo, I., Jeong, J., Cho, Y., Hong, J., Yoon, H. -S., Kim, S. H. & Kim, S. 2011. Characterization and comparison of biodiesels made from Korean freshwater algae. Bull. Korean Chem. Soc. 32:2830-2832. https://doi.org/10.5012/bkcs.2011.32.8.2830
Cited by
- Algal biofuels in Canada: Status and potential vol.44, 2015, https://doi.org/10.1016/j.rser.2014.12.024
- Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011 vol.477, pp.3, 2016, https://doi.org/10.1016/j.bbrc.2016.06.090
- Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2015, https://doi.org/10.1007/s11120-014-9974-y
- Characterization of fatty acid components from Tetradesmus obliquus KNUA019 (Chlorophyta, Scenedesmaceae) for a resource of biofuel production vol.42, pp.3, 2013, https://doi.org/10.1007/s40415-019-00556-9
- Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources vol.6, pp.7, 2013, https://doi.org/10.1016/j.heliyon.2020.e04447