DOI QR코드

DOI QR Code

적외선열화상 카메라를 이용한 원전 소구경 감육배관의 결함 검출

Application Defects Detection in the Small-Bore Pipe Using Infrared Thermography Technique

  • 윤경원 (조선대학교 대학원 첨단부품소재공학과) ;
  • 김동률 (조선대학교 대학원 첨단부품소재공학과) ;
  • 정현철 (조선대학교 기계설계공학과) ;
  • 홍동표 (전북대학교 기계시스템공학부) ;
  • 김경석 (조선대학교 기계설계공학과)
  • 투고 : 2012.09.18
  • 심사 : 2012.11.08
  • 발행 : 2013.02.28

초록

선행 연구에서 적외선열화상기법을 이용하여 원전 배관의 감육 결함을 측정하기 위하여, 4 inch 배관에 인공결함을 가공하여 이에 대한 결함 검출을 도출하였다. 본 논문에서는 선행연구에서 도출된 조건을 이용하여 원전 소구경 배관의 결함 검출 조건에 관한 연구를 수행하였다. 결함의 가공은 감육 길이, 원주방향 각도, 감육 깊이를 변화시켜서 결함 조건을 가공하였다. 사용된 장비는 IR camera와 1 kW용량의 halogen lamp 2개를 사용하였으며, halogen lamp와 대상 배관과의 거리를 1 m, 1.5 m, 2 m 순으로 변화시켜 실험을 수행하였다. 실험 결과의 분석을 위하여 온도분포데이터를 확보하고, 이를 분석하여 결함 길이를 측정하였다. 4 inch 배관의 인공결함은 2 m에서 측정 결과의 신뢰도가 높았으나, 소구경 배관은 1.5 m에서 결함이 명확하게 검출되었다.

In the advanced research deducted infrared thermography (IRT) test using 4 inch pipe with artificial wall-thinning defect to measure on the wall-thinned nuclear pipe components. This study conducted for defect detection condition of nuclear small-bore pipe research using deducted condition in the advanced research. Defect process is processed by change for defect length, circumferential direction angle, wall-thinning depth. In the used equipment IR camera and two halogen lamps, whose full power capacitany is 1 kW, halogen lamps and Target pipe experiment performed to the distance of the changed 1 m, 1.5 m, 2 m. To analysis of the experimental results ensure for the temperature distribution data, by this data measure for defect length. artificial defect of 4 inch pipe is high reliability in the 2 m, but small-bore pipe is in the 1.5 m from the defect clearly was detected.

키워드

참고문헌

  1. Y. M. Jung, "Experimental evidence and analysis of a mode conversion of guided wave using magnetostrictive strip transducer," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 2, pp. 93-97 (2009)
  2. M. Y. Choi, "The utilization of nondestructive testing and defects diagnosis using infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 5, pp. 525-531 (2004)
  3. Korea Hydro & Nuclear Power Co., "Standard Technical system development of thinned pipe management in NPP secondary system," Final Report-00NJ12 (2003)
  4. S. H. Lee, T. R. Kim, S. C. Jeon and K. M. Hwang, "Thinned pipe management program of Korean NPPs," Transaction of SMiRT-17, Paper #O04-2, Prague, Czech Repblic, Aug. 17-23 (2003)
  5. IAEA, "Development of Protocols for Corrosion and Deposits Evaluation in Pipes by Radiography," IAEA-TECDOC-1445 (2005)
  6. T. Knook, M. Persoz, S. Trevin, S. Friol, M. Moutrille and L. Dejoux, "Pipe wall thinning management at Electricite de France (EDF)," E-Journal of the Advanced Maintanance, Vol. 2, pp.1-13, (2010)
  7. K. J. Lee, H. S. Jang, H. C. Jung and K. S. Kim, "Quantitative out-of-plane deformation measurement of pressure vessel with the defect using shearography," Journal of the Korean Society for Precision Engineering, Vol. 23, No. 10, pp. 36-42 (2006)
  8. X. P. V. Maldague, "Trends in Optical Nondestructive Testing and Inspection," P. K. Rastogi, D. Ibaudi, Editors Elsevier Science, Switzerland (2000)
  9. J. W. Kim, K. W. Yun, H. C. Jung and K. S. Kim, "Determination of an test condition for IR thermography to inspect a wallthinning defect in nuclear piping components," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 1, pp. 12-19 (2012) https://doi.org/10.7779/JKSNT.2012.32.1.012
  10. K. S. Kim, H. J. Jung, C. J. Park, D. S. Kim, D. W. Jung and H. S. Jang, "A Study on measuring the temperature and revising the resuit when measuring the temperature of NPP pipes using infrared thermography" Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 5, pp. 421-426 (2009)