DOI QR코드

DOI QR Code

Asymmetric Cascaded Multi-level Inverter: A Solution to Obtain High Number of Voltage Levels

  • Banaei, M.R. (Electrical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University) ;
  • Salary, E. (Electrical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University)
  • Received : 2012.03.19
  • Accepted : 2012.09.20
  • Published : 2013.03.01

Abstract

Multilevel inverters produce a staircase output voltage from DC voltage sources. Requiring great number of semiconductor switches is main disadvantage of multilevel inverters. The multilevel inverters can be divided in two groups: symmetric and asymmetric converters. The asymmetric multilevel inverters provide a large number of output steps without increasing the number of DC voltage sources and components. In this paper, a novel topology for multilevel converters is proposed using cascaded sub-multilevel Cells. This sub-multilevel converters can produce five levels of voltage. Four algorithms for determining the DC voltage sources magnitudes have been presented. Finally, in order to verify the theoretical issues, simulation is presented.

Keywords

References

  1. A. Nabe, I. Takahashi, and H. Akagi, "A new neutralpoint clamped PWM inverter", in Proceeding of IEEE Industry Applications Society Conference, pp. 761-766, 1980.
  2. J. S. Lai and F. Z. Peng, "Multilevel converters—A new breed of power converters", IEEE Trans. Ind. Appl., Vol. 32, No. 3, pp. 509-517, May/Jun. 1996. https://doi.org/10.1109/28.502161
  3. D. Krug, S. Bernet, S. S. Fazel, K. Jalili, and M. Malinowski, "Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives", IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2979-2992, 2007. https://doi.org/10.1109/TIE.2007.906997
  4. Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, "A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage", IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1512-1521, 2006. https://doi.org/10.1109/TIE.2006.882022
  5. F. Richardeau, P. Baudesson, and T. Meynard, "Failures-tolerance and remedial strategies of a PWM multicell inverter", in Proceeding of IEEE Power Electronics Specialist Conference, Galway, Ireland, pp. 649-654, 2000.
  6. F. Z. Peng, "A generalized multilevel inverter topology with self voltage balancing", IEEE Trans. Ind. Applicat., Vol. 37, pp. 611-618, 2001. https://doi.org/10.1109/28.913728
  7. F. Z. Peng, J. W. McKeever, and D. J. Adams, "A power line conditioner using cascade multilevel inverters for distribution systems", in Proceeding of IEEE Industry Applications Society Conference, Vol. 2, pp.1316-1321, 1997.
  8. M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, "Hybrid multilevel power conversion system: a competitive solution for high-power applications", IEEE Trans. Ind. Applicat., Vol. 36, pp. 834-841, 2000. https://doi.org/10.1109/28.845059
  9. K. A. Corzine and Y. L. Familiant, "A new cascaded multilevel H-bridge drive", IEEE Trans. Power Electron., Vol. 17, pp.125-131, 2002. https://doi.org/10.1109/63.988678
  10. J. I. Leon, S. Vazquez, A. J. Watson, L. G. Franquelo, P. W. Wheeler and J. M. Carrasco, "Feed-forward space vector modulation for single-phase multilevel cascaded converters with any DC voltage ratio", IEEE Trans. Industrial Electronics, Vol. 56, No. 2, pp. 315-325, 2009. https://doi.org/10.1109/TIE.2008.926777
  11. M. Manjrekar and T.A. Lipo, "A hybrid multilevel inverter topology for drive application", in Proceeding of the APEC 98, pp. 523-529, 1998.
  12. C. Rech and J. R. Pinheiro, "Hybrid Multilevel Converters: Unified Analysis and Design Considerations", IEEE Trans. Ind. Electron., Vol. 54, pp. 1092-1104, 2007. https://doi.org/10.1109/TIE.2007.892255
  13. Y. S. Lai and F. S. Shyu, "Topology for hybrid multilevel inverter", IEE Proc. Electr. Power Applicat. 149, pp. 449-458, 2002. https://doi.org/10.1049/ip-epa:20020480
  14. E. Babaei and S. H. Hosseini, "New cascaded multilevel inverter topology with minimum number of switches", Energy Conversion and Management, Vol. 50, 2761-2767, 2009. https://doi.org/10.1016/j.enconman.2009.06.032
  15. M. R. Banaei and E. Salary, "New multilevel inverter with reduction of switches and gate driver", Energy Conversion and Management, Vol. 52, pp. 1129-1136, 2011. https://doi.org/10.1016/j.enconman.2010.09.007
  16. K. El-Naggar and T. H. Abdelhamid, "Selective harmonic elimination of new family of multilevel inverters using genetic algorithms", Energy Conversion and Management, Vol. 49, pp. 89-95, 2008. https://doi.org/10.1016/j.enconman.2007.05.014
  17. E. Babaei, S. H. Hosseini, G.B. Gharehpetian, M. Tarafdar Haque and M. Sabahi, "Reduction of dc voltage sources and switches in asymmetrical multilevel converters using a novel topology", Electric Power Systems Research, pp. 1073-1085, 2007.
  18. E. Babaei, "Optimal Topologies for Cascaded Sub- Multilevel Converters", Journal of Power Electronics, Vol. 10, No. 3, pp. 251-261, 2010. https://doi.org/10.6113/JPE.2010.10.3.251
  19. N. Celanovic and D. Boroyevic, "A fast space vector modulation algorithm for multilevel three-phase converters", in Proceeding of Conf. Rec. IEEE-IAS Annu. Meeting, Phoenix, AZ, pp. 1173-1177, 1999.
  20. J. Rodriguez, P. Correa, and L. Moran, "A vector control technique for medium voltage multilevel inverters", in Proceeding of IEEE APEC, Anaheim, CA, pp.173-178, 2001.
  21. G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, "A new multilevel PWM method: a theoretical analysis", IEEE Trans. On. Pow. Electr., Vol. 7, No. 3, pp. 497-505, 1992. https://doi.org/10.1109/63.145137
  22. L. Tolbert and T. G. Habetler, "Novel multilevel inverter carrier-based PWM method", IEEE Trans. Ind. Applicat., Vol. 35, pp. 1098-1107, 1999. https://doi.org/10.1109/28.793371
  23. Y. Liang and C. O. Nwankpa, "A new type of STATCOM Based on cascading voltage-source inverters with phase-shifted unipolar SPWM", IEEE Trans. Ind. Applicat., Vol. 35, pp. 1118-1123, 1999. https://doi.org/10.1109/28.793373
  24. K. A. Corzine, M. W. Wielebski, F. Z. Peng and J.Wang, "Control of cascaded multi-level inverters", IEEE Trans Power Electron; Vol. 19, No. 3, pp. 732- 738, 2004. https://doi.org/10.1109/TPEL.2004.826495
  25. Z. Du, L. M. Tolbert and J. N. Chiasson, "Active harmonic elimination for multilevel converters", IEEE Trans. Power. Electron. Vol. 21, No.2, pp. 459- 469, 2006. https://doi.org/10.1109/TPEL.2005.869757
  26. E. Babaei and S. H. Hosseini, "Charge balance control methods for asymmetrical cascade multilevel converters", in Proceeding of international conference on electrical machines and systems, Korea; pp. 74-79, 2007.
  27. C. K. Lee, S. Y. Ron Hui, and H. Shu-Hung Chung, "A 31-Level Cascade Inverter for Power Applications", IEEE Trans. Ind. Elect., Vol. 49, No. 3, pp. 613-617, 2002.
  28. P. Zhiguo and F. Z. Peng, "Harmonics optimization of the voltage balancing control for multilevel converter/ inverter systems", in Proceeding of IEEE 39th Annual Industry Applications Conference, pp. 2194- 2201, October, 2004.
  29. J. Chiasson, L. Tolbert, K. Mc Kenzie and Z. Du, "Real-time computer control of a multilevel converter using the mathematical theory of resultants", Elsevier J. Math. Comput. Simul. Vol. 63, pp.197-208, 2003. https://doi.org/10.1016/S0378-4754(03)00067-3

Cited by

  1. Multilevel inverter topology using single source and double source module with reduced power electronic components vol.2017, pp.5, 2017, https://doi.org/10.1049/joe.2017.0068
  2. Hybrid Control Strategy for BCD Topology Based Modular Multilevel Inverter vol.07, pp.08, 2016, https://doi.org/10.4236/cs.2016.78126
  3. A 43-level filterless CMLI with very low harmonics values vol.1, pp.3, 2014, https://doi.org/10.1016/j.jesit.2014.12.001
  4. Evaluation of Modulation Strategies for Single-Phase Quasi-Z-Source Inverter pp.2250-2114, 2019, https://doi.org/10.1007/s40031-019-00378-z