DOI QR코드

DOI QR Code

Analysis and Comparison for a 4-Coil Magnetic Resonance Wireless Power Transfer System

4-코일 자기 공진 무선 전력 전송 시스템의 해석법 연구

  • 이건복 (포항공과대학교 전자전기공학과) ;
  • 박위상 (포항공과대학교 전자전기공학과)
  • Received : 2013.01.07
  • Accepted : 2013.02.07
  • Published : 2013.02.28

Abstract

The critical point analysis(CA) and impedance matching analysis(IA) are performed and compared for a 4-coil magnetic resonance wireless power transfer system. Because the operating frequency splits at short distance while the efficiency drops drastically at long distance in this system, the optimization technique is needed for either a specific distance or efficiency at the fixed frequency. CA uses the critical point where shows maximum efficiency in the entire range and IA uses the impedance matching technique to achieve maximum efficiency at the specific distance. Comparison result shows that IA is more efficient than CA. Also, it shows one side matching has a tradeoff relationship comparing to both side matching. By using four spiral resonant coils, the analysis was experimentally verified. The measured data agreed well with the calculated data.

4-코일 자기 공진 무선 전력 전송 시스템의 해석법 중 critical point analysis(CA)와 impedance matching analysis(IA)를 분석하고, 두 결과를 비교하였다. 4-코일 시스템은 가까운 거리에서는 주파수 분리 현상이 나타나고, 먼 거리에서는 효율이 급격히 감소하는 특징을 나타낸다. 따라서 고정된 주파수에서 사용할 경우, 목표하는 거리와 효율에 따라 최적화가 필요하다. CA는 전체 거리에서 효율이 최대가 되는 critical point를 이용하여 최적화하는 방법이고, IA는 목표 지점에서 임피던스 정합을 이뤄 최대 효율을 만족시키는 방법이다. 기존의 해석은 두 가지 방법을 비교하고 시스템 특성을 이해하는데 부족한 점이 있었기 때문에, 본 논문에서 두 방법의 이론을 좀 더 자세히 분석하고 비교하였다. 두 방법의 비교 결과를 통해 IA가 더 우수함을 보였다. 또한, 한쪽만 정합할 경우 발생되는 트레이드-오프에 대해서도 설명하였다. 스파이럴 공진 코일을 이용한 실험에서는 이론 결과와 동일한 결과를 얻을 수 있었다.

Keywords

References

  1. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances", Science, vol. 317, no. 5834, pp. 83-86, Jul. 2007. https://doi.org/10.1126/science.1143254
  2. Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, "Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system", IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1801- 1812, May 2009. https://doi.org/10.1109/TIE.2008.2010110
  3. B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers", IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2017195
  4. A. P. Sample, D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer", IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046002
  5. B. H. Waters, A. P. Sample, P. Bonde, and J. R. Smith, "Powering a ventricular assist device(VAD) with the free-range resonant electrical energy delivery (FREE-D) system", Proc. IEEE, vol. 100, no. 1, pp. 138-149, Jan. 2012. https://doi.org/10.1109/JPROC.2011.2165309
  6. 김희승, 원도현, 임재봉, 장병준, "루프 안테나를 이용한 무선 전력 전송 시스템의 새로운 설계", 한국전자파학회논문지, 21(1), pp. 36-45, 2010년 1월.
  7. 김진욱, 지현호, 최연규, 윤영현, 김관호, "자기 공명 무선 전력 전송 시스템에서 공진 코일의 배열에 관한 연구", 한국전자파학회논문지, 21(6), pp. 564-574, 2010년 6월. https://doi.org/10.5515/KJKIEES.2010.21.6.564
  8. A. Kumar, S. Mirabbasi, and M. Chiao, "Resonance- based wireless power delivery for implantable devices", Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, pp. 25-28, Nov. 2009.
  9. T. Imura, Y. Hori, "Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula", IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, Oct. 2011. https://doi.org/10.1109/TIE.2011.2112317
  10. M. Kiani, U.-M. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission", IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579-591, Dec. 2011. https://doi.org/10.1109/TBCAS.2011.2158431
  11. T. Miyamoto, S. Komiyama, H. Mita, and K. Fujimaki, "Wireless power transfer system with a simple receiver coil", Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications(IMWS), 2011 IEEE MTT-S International, pp. 131-134, May 2011.
  12. T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, "A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion- free capsule endoscopy inspection", IEEE Trans. Biomed. Eng., to be published.
  13. C. K. Lee, W. X. Zhong, and S. Y. R. Hui, "Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems", IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1905-1916, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2169460
  14. T. Imura, "Equivalent circuit for repeater antenna for wireless power transfer via magnetic resonant coupling considering signed coupling", Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, pp. 1501-1506, Jun. 2011.
  15. M. Kiani, M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 2065-2074, Sep. 2012. https://doi.org/10.1109/TCSI.2011.2180446
  16. S. Cheon, Y.-H. Kim, S.-Y. Kang, M. L. Lee, J. -M. Lee, and T. Zyung, "Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances", IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, Jul. 2011. https://doi.org/10.1109/TIE.2010.2072893
  17. J. Lee, S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer", IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3442-3449, Nov. 2010. https://doi.org/10.1109/TAP.2010.2071330
  18. Y. G. Kim, S. Nam, "Analysis of wireless power transfer using spherical modes", Antenna Technology (iWAT), 2012 IEEE International Workshop on, pp. 165-168, Mar. 2012.
  19. J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, "Investigation of adaptive matching methods for nearfield wireless power transfer", IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769-1773, May 2011. https://doi.org/10.1109/TAP.2011.2123061
  20. T. P. Duong, J. -W. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method", IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011. https://doi.org/10.1109/LMWC.2011.2160163
  21. 원도현, 김희승, 장병준, "가변 임피던스 정합 회로를 갖는 루프 안테나를 이용한 13.56 MHz 무선 전력 전송 시스템", 한국전자파학회논문지, 21(5), pp. 519-527, 2010년 5월.
  22. O. Wing, Classical Circuit Theory, Springer, pp. 131-162, 2008.
  23. I. Awai, Y. Zhang, T. Komori, and T. Ishizaki, "Coupling coefficient of spiral resonators used for wireless power transfer", Microwave Conference Proceedings(APMC), 2010 Asia-Pacific, pp. 1328- 1331, Dec. 2010.
  24. C. M. Zierhofer, E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils", IEEE Trans. Biomed. Eng., vol. 43, no. 7, pp. 708-714, Jul. 1996. https://doi.org/10.1109/10.503178
  25. H. Hoang, S. Lee, Y. Kim, Y. Choi, and F. Bien, "An adaptive technique to improve wireless power transfer for consumer electronics", IEEE Trans. Consum. Electron., vol. 58, no. 2, pp. 327-332, May 2012. https://doi.org/10.1109/TCE.2012.6227430
  26. M. Zargham, P. G. Gulak, "Maximum achievable efficiency in near-field coupled power-transfer systems", IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 228-245, Jun. 2012. https://doi.org/10.1109/TBCAS.2011.2174794
  27. D. Kajfez, E. J. Hwan, "Q-factor measurement with network analyzer", IEEE Trans. Microw. Theory Tech., vol. 32, no. 7, pp. 666-670, Jul. 1984. https://doi.org/10.1109/TMTT.1984.1132751