DOI QR코드

DOI QR Code

Changes in Allicin Contents of Garlic via Light Irradiation

광 조사에 의한 마늘의 알리신 함량 변화

  • Jeong, Hoon (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sun-Ho (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yun, Hong-Sun (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Seung-Ryul (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development Administration)
  • 정훈 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이선호 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 윤홍선 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 최승렬 (농촌진흥청 국립농업과학원 농업공학부)
  • Received : 2012.09.25
  • Accepted : 2013.02.14
  • Published : 2013.02.28

Abstract

Agri-food garlic has been recognized as healthful because of its antibacterial, anticancer and antioxidant effects. As such, its consumption is steadily increasing. This study was conducted to amplify the healthful ingredient of garlic, allicin, using light irradiation. The following conclusions were drawn from the investigation of peeled garlic under various conditions like fluorescent lighting, color (green, yellow, blue and red) and ultraviolet light (UV-A, UV-B and UV-C). The allicin content increased most with the 15-second $0.129W/m^2$ (40 W) UV-B treatment of the garlic at a 700 mm distance from the light source. At the treatment of the garlic with 126 lx (40W) red light for 24 hours at a 700 mm distance from the light source, its allicin content increased from $15.15{\pm}0.25mg/g$ to $15.15{\pm}0.34mg/g$, for a 10-percent amplification effect. Therefore, it is believed that the healthfulness of garlic can be amplified through irradiation processing of its healthful ingredient, allicin, and the development of its processing unit.

최근 국민의 생활수준이 높아지면서 건강과 먹거리에 대한 관심도 높아지고 있다. 따라서 항암효과나 항산화물질을 함유한 기능성 농산물이나 식품 등의 소비도 증가되고 있는 실정이다. 마늘은 항균, 항암, 항산화 등의 여러 가지 기능성 효과 때문에 건강 농식품으로 인정받고 있으며 꾸준히 소비가 되고 있는 농산물이다. 특히 마늘의 알리신 성분의 증폭을 위해 최근 연구되고 있는 광 조사에 의한 알리신 성분 향상에 대한 연구를 수행하였다. 본 연구를 통해 도출한 연구의 결론은 다음과 같다. 깐 마늘에 형광등, 컬러등(녹색, 황색, 청색, 적색), 자외선등(UV-A, UV-B, UV-C) 등을 다양한 조건으로 조사 했을 때, 알리신 성분의 함량이 가장 많이 증가한 처리구는 UV-B 자외선등으로 700 mm 광원 거리에서 15초 동안 조사한 $0.129W/m^2$ (40 W) 강도의 처리구와 적색등의 700 mm 광원 거리에서 24시간 동안 조사한 126 lx (40 W) 조도의 처리구이며, 각각의 알리신 함량 변화는 $15.15{\pm}0.25mg/g$$15.15{\pm}0.34mg/g$ 으로 나타나 대조구에 비해 10%의 증폭효과가 나타났다. 또한 이들 두 처리구에 대해 광 조사 처리를 하지 않은 마늘과의 유의성 검증 결과, 5% 이하의 유의수준에서 광 조사 미처리구에 비해서 차이가 있는 것으로 나타났다. 따라서, 이러한 광조사 처리에 의한 마늘의 알리신 등의 기능성 성분이 증폭될 수 있는 것으로 판단되며, 대량으로 마늘의 기능성을 향상 시킬 수 있는 처리장치의 개발 등으로 산업화 할 수 있을 것으로 판단된다.

Keywords

References

  1. Park YS (2007), Development of functional beverages using distilled extract of korean medicinal herb. J East Asian Soc Dietary Life, 17, 384-392
  2. Luckey TD (1980) Hormesis with ionizing radiation. CRC press, Baca Raton, Florida, USA
  3. Cho YJ, Kim CJ, Kim CT, Kim TE, Bae KS, Kihl JY, Pyee J, Lee SK (2008) Effect of UV hormesis on phenolics contents in strawberries. Food Engn Prog, 12, 143-148
  4. Lester GE, Makus DJ, Hodges DM (2010) Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J Agric Food Chem, 58, 2980-2987 https://doi.org/10.1021/jf903596v
  5. Avena-Bustillos RJ, Di WX, Woods R, Olson D, Breksa AP 3rd, McHugh TH (2012), Ultraviolet-B light treatment increases antioxidant capacity of carrot products. J Sci Food Agric, 92, 2341-2348 https://doi.org/10.1002/jsfa.5635
  6. Cho YJ, Maeng JS, Kim CT, Pyee J (2011) Enrichment of resveratrol content in harvested grape using modulation of cell metabolism with UV treatment. J East Asian Soc Dietary Life, 21, 739-745
  7. Kyung KH (2006) Growth inhibitory activity of sulfur compounds of garlic against pathogenic microorganisms. J Fd Hyg Safety, 21, 145-152
  8. Lawson LD, Koch HP (1996) Garlic: the science and therapeutic application of Allium sativum L. and related species. Wiliams & Wilkins, Baltimore, MD, USA
  9. Cavallito CJ, Bailey JH (1944) Allicin, the antibacterial principle of allium sativum. I. Isolation, physical properties, and antibacterial action. J Am Chem Soc, 66, 1950-1951 https://doi.org/10.1021/ja01239a048
  10. Stoll A, Seebeck E (1951) Chemical investigations on alliin, the specific principle of garlic. Adv Enzymol, 11, 377-400
  11. Aslani MR, Mohri M, Chekani M (2006), Effects of garlic (Allium sativum) and its chief compound, allicin, on acute lethality of cynide in rats. Comp Clin Pathol, 15, 211-213 https://doi.org/10.1007/s00580-006-0633-3
  12. Arzanlou M, Bohlooli S, Jannati E, Miranejad-Asl H (2010), Allicin from garlic neutralizes the hemolytic activity of intra- and extra-cellular pneumolysin O in vitro. Toxicon, 57, 540-545
  13. Natsuko O, Fumihide T, Shouta M, Tetsuro K, Yasuhito I, Nobuo Y, Tomohisa O (2012), Garlic extract and its selected organosulphur constituents promote ileal immune responses ex vivo. J Func Foods, 4, 243-252 https://doi.org/10.1016/j.jff.2011.11.003
  14. Chung DO, Park YK (1999) The study of softdrinks production and functional food in onions. Korean J Soc Food Sci, 15, 158-162
  15. Park ID, Hong YH (1992) Development of fresh cheeses and whey drinks using milk components. Korean J Food Sci Technol, 24, 209-214
  16. Shin JH, Lee SJ, Choi DJ, Kwen OC (2007) Quality characteristics of cookies with added concentrations of garlic juice. Korean J Food Cookery Sci, 23, 609-614

Cited by

  1. 냉동조건에 따른 편마늘의 냉동저장 중 품질변화 vol.24, pp.6, 2013, https://doi.org/10.11002/kjfp.2017.24.6.746
  2. Stress and defense responses in plant secondary metabolites production vol.52, pp.1, 2019, https://doi.org/10.1186/s40659-019-0246-3