References
- NUMO-TR-04-05, Proceeding of the international workshop on bentonite-cement interaction in repository environments, NUMO, 14-16 April, Tokyo, Japan (2004).
- Ichikawa, Y., Kawamura K., Nakano, M., Kitayama, K., and Kawamura, H., "Unified molecular dynamics and homogenization analysis for bentonite behavior: current results and the future possibility," Engineering Geology, vol. 54, pp. 21-31 (1999). https://doi.org/10.1016/S0013-7952(99)00058-7
- Ichikawa, Y., Kawamura, K., Fujii, N., and Theramast, N., " Molecular dynamics and multiscale homogenization analysis of seepage/diffusion problem in bentonite clay," International Journal of Numerical Methods in Engineering, vol. 54, pp. 1717-1749 (2002). https://doi.org/10.1002/nme.488
- Suzuki, S., Prayongpan, S., Ichikawa, Y., Chae, B.G., "In situ observation of the swelling of bentonite aggregates in NaCl solution," Applied Clay Science, vol. 29(2), pp. 89- 98 (2005). https://doi.org/10.1016/j.clay.2004.11.001
- Mitchell, K.J. and Soga, K., Fundamentals of soil behavior, Wiley: New york, pp. pp. 1-82 (1992).
- Stumm W. and Morgan, J.J., Aquatic chemistry, Wiley: New york, (1996).
-
Berger, G., Cadore, E., Schott, J., Dove, P.M., "Dissolution rate of quartz in lead and sodium electrolyte solution between 25 and
$300^{\circ}C$ : Effect of the nature of surface complexes and reaction affinity," Geochimica et Cosmochimica Acta, vol. 58(2), pp. 541-551 (1994). https://doi.org/10.1016/0016-7037(94)90487-1 -
Brady, P.V. and Walther, J.V., "Controls on silicate dissolution rates in neutral and basic pH solutions at
$25^{\circ}C$ ," Geochimical et Cosmichimica Acta, vol. 53, pp. 2823-2830 (1989). https://doi.org/10.1016/0016-7037(89)90160-9 -
Dove, P.M., " The dissolution kinetics of quartz in sodium chloride solutions at
$25^{\circ}C$ to$300^{\circ}C$ ," American Journal of Science, vol. 294, pp. 665-712 (1994). https://doi.org/10.2475/ajs.294.6.665 - Garnor, J., Mogollon, J.L., Lasaga, A.C., " The effect of pH on kaolinite rates and activation energy," Geochimica et Cosmochimica Acta, vol. 59(6), pp. 1037-1052 (1995). https://doi.org/10.1016/0016-7037(95)00021-Q
- Ganor, J. and Lasaga, A.C., "Simple mechanistic models for inhibition of a dissolution reaction," Geochimica et Cosmochimica Acta, vol. 62(8), pp. 1295-1306 (1998). https://doi.org/10.1016/S0016-7037(98)00036-2
- Gratz, A.J. and Bird, P., "Quartz dissolution: Negative crystal experiments and a rate law," Geochimica et Cosmochimica Acta, vol. 57, pp. 965-976 (1993). https://doi.org/10.1016/0016-7037(93)90033-S
- Lahann, R.W., Roberson, H.E., "Dissolution of silica from montmorillonite: effect of solution chemistry," Geochim et Cosmochim Acta, vol. 44, pp. 1937-1943 (1980). https://doi.org/10.1016/0016-7037(80)90193-3
- Yasuhara, H., Elsworth, D., Polak, A., "A mechanistic model for compaction of granular aggregates moderated by pressure solution," Journal of Geophysical Research, vol. 108(B11), 2530, doi:10.1029/2003JB002536 (2003).
- Yasuhara, H., Kinoshita, N., Kurikami, H., Nakashima, S., Kishida, K., "Evolution of permeability in siliceous rocks induced by mineral dissolution and precipitation," Journal of Japan Society of Civil Engineering, vol. 63(4): pp. 1091- 1100 (2007) (In Japanese)
Cited by
- Application of hybrid numerical and analytical solutions for the simulation of coupled thermal, hydraulic, mechanical and chemical processes during fluid flow through a fractured rock vol.74, pp.12, 2015, https://doi.org/10.1007/s12665-015-4769-9