DOI QR코드

DOI QR Code

워터젯 자유면을 이용한 암반발파 굴착공법의 효과

Effects of free surface using waterjet cutting for rock blasting excavation

  • 투고 : 2013.01.09
  • 심사 : 2013.01.25
  • 발행 : 2013.01.31

초록

기존 발파를 이용한 암반굴착 공법은 효율적이나 심각한 수준의 발파진동 및 여굴/미굴을 발생시킨다. 이러한 단점을 보완하기 위해, 본 연구에서는 워터젯 절삭기술을 이용하여 터널 계획선을 따라 자유면을 형성한 후 발파하는 공법을 제안하고 있다. 제안공법은 (1) 발파진동/소음을 저감시키고, (2) 여굴/미굴을 최소화 시키고, (3) 굴착효율 극대화가 가능하다. 제안공법의 효과를 검증하기 위해 기존에 널리 쓰이고 있는 스무스 블라스팅(smooth blasting) 공법을 실험 대조군으로 설정하여 동일한 조건에서 현장실험을 수행하였다. 실험결과, 발파 진동은 최대 55% 감소하고 여굴/미굴은 거의 발생하지 않는 것으로 확인되었다. 또한 굴착효율은 기존공법에 비해 뛰어난 것으로 분석되었다. 본 연구에서 제안하고 있는 워터젯 자유면을 이용한 암반 발파공법은 도심지 굴착공사뿐만 아니라 지하구조물 구축공사에 널리 활용될 수 있을 것으로 기대된다.

The conventional blasting method generates serious blasting vibration and underbreak/overbreak in spite of its high efficiency for rock excavation. To overcome these disadvantages, this paper introduces an alternative excavation method that combines the conventional blasting process with the free surface on the perimeter of the tunnel face using waterjet cutting technology. This proposed excavation method has advantages of (1) reducing vibration and noise level; (2) minimizing underbreak and overbreak; and (3) maximizing excavation efficiency. To verify the effects of the proposed excavation method, field tests were performed with a smooth blasting method at the same excavation conditions. Test results show that the vibration is reduced by up to 55% and little underbreak/overbreak is generated compared with the smooth blasting method. In addition, the excavation efficiency of the proposed method is greater than that of the smooth blasting method. The proposed blasting method with a free surface using waterjet cutting can be applied to urban excavation construction as well as to underground structure construction.

키워드

참고문헌

  1. Berta, G. (1994), "Blasting-induced vibration in tunnelling", Tunnelling and Underground Space Technology, Vol. 9, No. 2, pp. 175-187. https://doi.org/10.1016/0886-7798(94)90029-9
  2. Hwang, H., Lee, T.R. (2002), "A study on pilot test of the composition presplitting angle cut method in tunnel blasting", Journal of the Korean Tunnelling and Underground Space Association, Vol. 4, No. 4, pp. 287-300.
  3. Kim, J.G. (2012), "Reduction of blasting-induced vibration in tunnelling using abrasive water jet notch and disc cutting", Ph.D. Dissertation, Seoul National University. pp. 57-62.
  4. Lee, I.M. (2007), Geotechnical Fundamentals of Tunnel, Saeron Publishing Co., pp. 279-281.
  5. Oh, T.M., Cho, G.C., Song, K.I., Ji, I.T. (2012), "A new rock excavation method using an abrasive waterjet to minimized excavation damaged zone", Proceedings of World Tunnel Congress 2012, Bangkok, Thailand, pp. 340-341.
  6. Oh, T.M., Cho, G.C. (2012), "Effects of geometric parameters of a combined nozzle for rock cutting using an abrasive waterjet", Journal of the Korean Tunnelling and Underground Space Association, Vol. 14, No. 5, pp. 517-528. https://doi.org/10.9711/KTAJ.2012.14.5.517
  7. Park, D.H., Jeon, B.K., Jeon S.W. (2009), "A numerical study on the screening of blast-induced waves for reducing ground vibration", Rock Mechanics and Rock Engineering, Vol. 42, pp. 449-473. https://doi.org/10.1007/s00603-008-0016-y
  8. Richart, F.E., Hall, J.R., Woods, R.D. (1970), Vibration of Soils and Foundations, Prentice-Hall, New Jersey, pp. 247-262.
  9. Santamarina J.C., Klein K.A., Fam M.A. (2001), Soils and Waves, Wiley, New York, pp. 195-200.
  10. Shin, J.H., Moon, H.K., Choi, K.C., Kim, T.K. (2009), "Evaluation of the blast-restriction zone to secure tunnel lining safety", Journal of the Korean Tunnelling and Underground Space Association, Vol. 11, No. 1, pp. 85-95.
  11. Uysal, O., Erarslan, K., Cebi, M.A., Akcakoca, H. (2008), "Effect of barrier holes on blast induced vibration", Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 5, pp. 712-719. https://doi.org/10.1016/j.ijrmms.2007.08.008

피인용 문헌

  1. Variation of abrasive feed rate with abrasive injection waterjet system process parameters vol.17, pp.2, 2015, https://doi.org/10.9711/KTAJ.2015.17.2.141
  2. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet vol.49, pp.3, 2016, https://doi.org/10.1007/s00603-015-0778-y
  3. Effect of water jet geometric parameters on rock fracturing vol.18, pp.3, 2014, https://doi.org/10.1007/s12205-014-0338-0
  4. Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation vol.16, pp.4, 2014, https://doi.org/10.9711/KTAJ.2014.16.4.417
  5. Monitoring of waterjet cutting free surface using laser sensor vol.15, pp.5, 2013, https://doi.org/10.9711/KTAJ.2013.15.5.469
  6. A review of the effects of rock properties on waterjet rock cutting performance vol.17, pp.5, 2015, https://doi.org/10.9711/KTAJ.2015.17.5.533