DOI QR코드

DOI QR Code

Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic

  • Received : 2012.10.15
  • Accepted : 2013.02.13
  • Published : 2013.02.28

Abstract

PURPOSE. The objective of this study was to compare the fracture toughness ($K_{Ic}$) obtained from the single edge V-notched beam (SEVNB) and the fractographic analysis (FTA) of a glass-infiltrated and a zirconia ceramic. MATERIALS AND METHODS. For each material, ten bar-shaped specimens were prepared for the SEVNB method ($3mm{\times}4mm{\times}25mm$) and the FTA method ($2mm{\times}4mm{\times}25mm$). The starter V-notch was prepared as the fracture initiating flaw for the SEVNB method. A Vickers indentation load of 49 N was used to create a controlled surface flaw on each FTA specimen. All specimens were loaded to fracture using a universal testing machine at a crosshead speed of 0.5-1 mm/min. The independent-samples t-test was used for the statistical analysis of the $K_{Ic}$ values at ${\alpha}$=0.05. RESULTS. The mean $K_{Ic}$ of zirconia ceramic obtained from SEVNB method ($5.4{\pm}1.6\;MPa{\cdot}m^{1/2}$) was comparable to that obtained from FTA method ($6.3{\pm}1.6\;MPa{\cdot}m^{1/2}$). The mean $K_{Ic}$ of glass-infiltrated ceramic obtained from SEVNB method ($4.1{\pm}0.6\;MPa{\cdot}m^{1/2}$) was significantly lower than that obtained from FTA method ($5.1{\pm}0.7\;MPa{\cdot}m^{1/2}$). CONCLUSION. The mean $K_{Ic}$ of the glass-infiltrated and zirconia ceramics obtained from the SEVNB method were lower than those obtained from FTA method even they were not significantly different for the zirconia material. The differences in the $K_{Ic}$ values could be a result of the differences in the characteristics of fracture initiating flaws of these two methods.

Keywords

References

  1. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404. https://doi.org/10.1016/S0022-3913(07)60124-3
  2. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8. https://doi.org/10.1177/00220345950740060301
  3. Scherrer SS, Denry IL, Wiskott HW. Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dent Mater 1998;14:246-55. https://doi.org/10.1016/S0109-5641(98)00032-3
  4. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  5. Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent 2007; 98:120-8. https://doi.org/10.1016/S0022-3913(07)60045-6
  6. Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont 2002;15:339-46.
  7. Triwatana P, Nagaviroj N, Tulapornchai C. Clinical performance and failures of zirconia-based fixed partial dentures: a review literature. J Adv Prosthodont 2012;4:76-83. https://doi.org/10.4047/jap.2012.4.2.76
  8. Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater 2003;19:603-11. https://doi.org/10.1016/S0109-5641(03)00002-2
  9. Fischer H, Waindich A, Telle R. Influence of preparation of ceramic SEVNB specimens on fracture toughness testing results. Dent Mater 2008;24:618-22. https://doi.org/10.1016/j.dental.2007.06.021
  10. Gogotsi GA. Fracture toughness of ceramics and ceramic composites. Ceram Int 2003;29:777-84. https://doi.org/10.1016/S0272-8842(02)00230-4
  11. Morrell R. Fracture toughness testing for advanced technical ceramics: internationally agreed good practice. Adv Appl Ceram 2006;105:88-98. https://doi.org/10.1179/174367606X84422
  12. International organization for standardization. ISO/FDIS 6872 Dentistry - Ceramic materials. Switzerland; 2007.
  13. Kübler JJ. Fracture toughness of ceramics using the SEVNB method; Round-Robin. VAMAS Report No. 37, Switzerland; EMPA, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, 1999.
  14. Kübler JJ. Fracture toughness of ceramics using the SEVNB method: from a preliminary study to a standard test method. In: Salem JA, Quinn GD, Jenkins MG, editors. Fracture resistance testing of monolithic and composite brittle materials: STP 1409. Pennsylvania; ASTM; 2002. p. 93-106.
  15. Scherrer SS, Kelly JR, Quinn GD, Xu K. Fracture toughness (KIc) of a dental porcelain determined by fractographic analysis. Dent Mater 1999;15:342-8. https://doi.org/10.1016/S0109-5641(99)00055-X
  16. Mecholsky JJ Jr. Fractography: determining the sites of fracture initiation. Dent Mater 1995;11:113-6. https://doi.org/10.1016/0109-5641(95)80045-X
  17. Taskonak B, Mecholsky JJ Jr, Anusavice KJ. Fracture surface analysis of clinically failed fixed partial dentures. J Dent Res 2006;85:277-81. https://doi.org/10.1177/154405910608500314
  18. Oh WS, Park JM, Anusavice K. Fracture toughness (KIC) of a hot-pressed core ceramic based on fractographic analysis of fractured ceramic FPDs. Int J Prosthodont 2003;16: 135-40.
  19. Scherrer SS, Quinn JB, Quinn GD, Kelly JR. Failure analysis of ceramic clinical cases using qualitative fractography. Int J Prosthodont 2006;19:185-92.
  20. ASTM, C1322-05a. Standard practice for fractography and characterization of fracture origins in advanced ceramics. Pennsylvania; American Society for Testing and Materials; 2005.
  21. Irwin GR. Crack-extension force for a part-through crack in a plate. J Appl Mech 1962;29:651. https://doi.org/10.1115/1.3640649
  22. Taskonak B, Yan J, Mecholsky JJ Jr, Sertgöz A, Koçak A. Fractographic analyses of zirconia-based fixed partial dentures. Dent Mater 2008;24:1077-82. https://doi.org/10.1016/j.dental.2007.12.006
  23. Scherrer SS, Quinn GD, Quinn JB. Fractographic failure analysis of a Procera AllCeram crown using stereo and scanning electron microscopy. Dent Mater 2008;24:1107- https://doi.org/10.1016/j.dental.2008.01.002
  24. Quinn JB, Quinn GD, Kelly JR, Scherrer SS. Fractographic analyses of three ceramic whole crown restoration failures. Dent Mater 2005;21:920-9. https://doi.org/10.1016/j.dental.2005.01.006
  25. Scher rer SS, Quinn JB, Quinn GD, Wiskott HW. Fractographic ceramic failure analysis using the replica technique. Dent Mater 2007;23:1397-404. https://doi.org/10.1016/j.dental.2006.12.002
  26. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater 2009;25: 383-91. https://doi.org/10.1016/j.dental.2008.09.001
  27. Thompson JY, Anusavice KJ, Naman A, Morris HF. Fracture surface characterization of clinically failed all-ceramic crowns. J Dent Res 1994;73:1824-32. https://doi.org/10.1177/00220345940730120601
  28. Wang H, Pallav P, Isgrò G, Feilzer AJ. Fracture toughness comparison of three test methods with four dental porcelains. Dent Mater 2007;23:905-10. https://doi.org/10.1016/j.dental.2006.06.033
  29. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J Am Ceram Soc 1981;64:533-8. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  30. Chantikul P, Anstis GR, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring toughness: II, Strength method. J Am Ceram Soc 1981;64:539-43. https://doi.org/10.1111/j.1151-2916.1981.tb10321.x
  31. Munz D. Effect of specimen type on the measured values of the fracture toughness of brittle ceramics. In: Bradt RC, Evans AG, Hasselman DPH, Lange FF, editors. Fracture Mechanics Ceramics 6. New York-London; Plenum press;1983. p. 1-26.
  32. Quinn GD, Kübler JJ, Gettings RJ. Fracture toughness of advanced ceramics by the surface crack in flexure (SCF) method: a VAMAS round robin. VAMAS Report No. 17, Switzerland; EMPA-Dübendorf; 1994.
  33. Nishida T, Hanaki Y, Pezzotti G. Effect of notch-root radius on the fracture toughness of a fine-grained alumina. J Am Ceram Soc 1994;77:606-8. https://doi.org/10.1111/j.1151-2916.1994.tb07038.x
  34. Damani RJ, Schuster C, Danzer R. Polished Notch modification of SENB-S Fracture Toughness Testing. J Eur Ceram Soc 1997;17:1685-9. https://doi.org/10.1016/S0955-2219(97)00024-1
  35. Fischer H, Marx R. Fracture toughness of dental ceramics: comparison of bending and indentation method. Dent Mater 2002;18:12-9. https://doi.org/10.1016/S0109-5641(01)00005-7
  36. Kübler J. Fracture toughness of ceramics using the SEVNB method: preliminary results. Ceram Eng Sci Proc 1997;18:155-62. https://doi.org/10.1002/9780470294444.ch18

Cited by

  1. In Vitro Fracture Toughness of Commercial Y-TZP Ceramics: A Systematic Review vol.24, pp.1, 2014, https://doi.org/10.1111/jopr.12179
  2. Fracture toughness of seven resin composites evaluated by three methods of mode I fracture toughness (KIc) vol.35, pp.6, 2016, https://doi.org/10.4012/dmj.2016-140
  3. Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses vol.13, pp.6, 2013, https://doi.org/10.4047/jap.2021.13.6.385
  4. Evaluation of Fracture Toughness, Color Stability, and Sorption Solubility of a Fabricated Novel Glass Ionomer Nano Zirconia-Silica-Hydroxyapatite Hybrid Composite Material vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/6626712