DOI QR코드

DOI QR Code

Increased Cytokine and Nitric Oxide Levels in Serum of Dogs Experimentally Infected with Rangelia vitalii

  • Paim, Francine C. (Laboratory of Veterinary Clinical Analysis-LACVet, Universidade Federal de Santa Maria) ;
  • Da Silvaz, Aleksandro S. (Department of Animal Science, Universidade do Estado de Santa Catarina) ;
  • Paim, Carlos Breno V. (Laboratory of Veterinary Clinical Analysis-LACVet, Universidade Federal de Santa Maria) ;
  • Franca, Raqueli T. (Laboratory of Veterinary Clinical Analysis-LACVet, Universidade Federal de Santa Maria) ;
  • Costa, Marcio M. (Laboratory of Veterinary Clinical Analysis-LACVet, Universidade Federal de Santa Maria) ;
  • Duarte, Marta M.M.F. (Lutheran University of Brazil-ULBRA) ;
  • Sangoi, Manuela B. (Department of Clinical and Toxicological Analysis, Universidade Federal de Santa Maria) ;
  • Moresco, Rafael N. (Department of Clinical and Toxicological Analysis, Universidade Federal de Santa Maria) ;
  • Monteiro, Silvia G. (Department of Microbiology and Parasitology-LAPAVET, Universidade Federal de Santa Maria) ;
  • Lopes, Sonia Terezinha A. (Laboratory of Veterinary Clinical Analysis-LACVet, Universidade Federal de Santa Maria)
  • 투고 : 2012.04.19
  • 심사 : 2012.10.04
  • 발행 : 2013.03.15

초록

This study aimed to measure the levels of interferon-gamma (IFN-${\gamma}$), tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin 1 (IL-1), interleukin 6 (IL-6), and nitrite/nitrate ($NO_x$) in serum of dogs experimentally infected with Rangelia vitalii. Twelve female mongrel dogs were divided into 2 groups; group A (uninfected controls) composed by healthy dogs (n=5) and group B consisting of dogs inoculated with R. vitalii (n=7). Animals were monitored by blood smear examinations, which showed intraerythrocytic forms of the parasite on day 5 post-infection (PI). Blood samples were collected through the jugular vein on days 0, 10, and 20 PI to determine the serum levels of IFN-${\gamma}$, TNF-${\alpha}$, IL-1, IL-6, and $NO_x$. Cytokines were assessed by ELISA quantitative sandwich technique, and $NO_x$ was measured by the modified Griess method. Cytokine levels (IFN-${\gamma}$, TNF-${\alpha}$, IL-1, and IL-6) were increased (P<0.01) in serum of infected animals. Serum levels of $NO_x$ were also increased on days 10 PI (P<0.01) and 20 PI (P<0.05) in infected animals. Therefore, the infection with R. vitalii causes an increase in proinflammatory cytokines and nitric oxide content. These alterations may be associated with host immune protection against the parasite.

키워드

참고문헌

  1. Loretti AP, Barros SS. Parasitism by Rangelia vitalii in dogs ("nambiuvu", "peste de sangue") - a critical review on the subject. Arq Inst Biol 2004; 71: 101-131.
  2. Franca RT, Silva AS, Paim FC, Costa MM, Soares JF, Mazzanti CM, Lopes STA. Rangelia vitalii in dogs in southern Brazil. Comp Clin Pathol 2010; 19: 383-387. https://doi.org/10.1007/s00580-010-1041-2
  3. Pestana BR. The Nambyuvu (Preliminar Note). Rev Soc Cient Sao Paulo 1910; 5: 14-17.
  4. Krauspenhar C, Fighera RA, Graca DL. Protozoan-associated hemolytic disease in dogs. Medvep - Rev Cien Med Vet Peq An Estim 2003; 1: 273-281.
  5. Loretti AP, Barros SS. Hemorrhagic disease in dogs infected with an unclassified intraendothelial piroplasm in southem Brazil. Vet Parasitol 2005; 134: 193-213. https://doi.org/10.1016/j.vetpar.2005.07.011
  6. Fighera RA, Souza TM, Kommers GG, Irogoyen LF, Barros CSC. Pathogenesis, clinical, hematological, and pathological aspects of Rangelia vitalii infection in 35 dogs (1985-2009). Pesq Vet Bras 2010; 30: 974-987. https://doi.org/10.1590/S0100-736X2010001100012
  7. Belardelli F. Role of interferons and other cytokines in the regulation of the immune response. Acta Pathol Microbiol Immunol Scan 1995; 103: 161-179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x
  8. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 7 ed. Philadelphia, USA. Saunders/Elsevier. 2012, p 527.
  9. Dusse LMS, Vieira LM, Carvalho MD. Review on nitric oxide. J Bras Patol Med Lab 2003; 39: 343-349.
  10. Filho RF, Zilberstein B. Nitric oxide: a simple messenger passing through the complexity. Metabolism, synthesis and functions. Rev Assoc Med Bras 2000; 46: 265-271. https://doi.org/10.1590/S0104-42302000000300012
  11. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003; 54: 469-487.
  12. Tatsch E, Bochi GV, Pereira RD, Kober H, Agertt VA, De Campo MMA, Gomes P, Duarte MMMF, Moresco RN. A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem 2011; 44: 348- 350. https://doi.org/10.1016/j.clinbiochem.2010.12.011
  13. Jacobson LS, Lobetti RG, Becker P, Reyers F, Vaughan-Scott T. Nitric oxide metabolites in naturally occurring canine babesiosis. Vet Parasitol 2002; 104: 27-41. https://doi.org/10.1016/S0304-4017(01)00606-9
  14. Kiral F, Karagenc T, Pasa S, Yenisey C, Seyrek K. Dogs with Hepatozoon canis respond to the oxidative stress by increased production of glutathione and nitric oxide. Vet Parasitol 2005; 131: 15-21.
  15. Tajima T, Rikihisa Y. Cytokine responses in dogs infected with Ehrlichia canis Oklahoma strain. Ann NY Acad Sci 2005; 1063: 429-432. https://doi.org/10.1196/annals.1355.078
  16. Da Silva AS, Franca RT, Costa MM, Paim CB, Paim FC, Dornelles GL, Soares JF, Labruna MB, Mazzanti CM, Monteiro SG, Lopes STA. Experimental infection with Rangelia vitalii in dogs: acute phase, parasitemia, biological cycle, clinical-pathological aspects and treatment. Exp Parasitol 2011; 128: 347-352. https://doi.org/10.1016/j.exppara.2011.04.010
  17. Soares JF, Girotto A, Brandao PE, Franca RT, Da Silva AS, Lopes STA, Labruna MB. Detection and molecular characterization of a canine piroplasm from Brazil. Vet Parasitol 2011; 180: 203-208. https://doi.org/10.1016/j.vetpar.2011.03.024
  18. Paim CB, Paim FC, Da Silva AS, Franca RT, Costa MM, Leal CA, Soares JF, Labruna MB, Schetinger MR, Mazzanti A, Mazzanti CM, Monteiro SG, Lopes ST. Thrombocytopenia and platelet activity in dogs experimentally infected with Rangelia vitalii. Vet Parasitol 2012; 185: 131-137. https://doi.org/10.1016/j.vetpar.2011.09.039
  19. Paim CB, Da Silva AS, Paim FC, Franca RT, Costa MM, Souza VC, Pimentel VC, Jaques JA, Mazzanti CM, Leal DB, Monteiro SG, Schetinger MR, Lopes ST. Activities of ectonucleotidases and adenosine deaminase in platelets of dogs experimentally infected with Rangelia vitalii. Exp Parasitol 2012; 131: 252-257. https://doi.org/10.1016/j.exppara.2012.03.012
  20. Da Silva A, Franca R, Costa M, Paim C, Paim F, Santos C, Flores E, Eilers T, Mazzanti C, Monteiro S, Amaral C, Lopes S. Influence of Rangelia vitalii (Apicomplexa: Piroplasmorida) on copper, iron and zinc bloodstream levels in experimentally infected dogs. J Parasitol 2012; DOI: 10.1645/GE-2985.1.
  21. Franca RT, Da Silva AS, Costa MM, Paim FC, Paim CB, Thome GR, Wolkmer P, Pereira ME, Schetinger MR, Moresco RN, Mazzanti CM, Monteiro SG, Lopes ST. Relationship between oxidative stress and clinical-pathological aspects in dogs experimentally infected with Rangelia vitalii. Res Vet Sci 2012; DOI:10.1016/j.rvsc.2012.02.001.
  22. Shoda LKM, Palmer GH, Florin-Christensen J, Florin-Christensen M, Godson DL, Brown WC. Babesia bovis-stimulated macrophages express interleukin-$1{\beta}$, interleukin-12, tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infect Imm 2000; 68: 5139-5145. https://doi.org/10.1128/IAI.68.9.5139-5145.2000
  23. Ergonul S, Askar TK. The investigation of heat shock protein (HSP 27), malondialdehyde (MDA), nitric oxide (NO) and interleukin (IL-6, IL-10) levels in cattle with anaplasmosis. Vet Sci 2009; 15: 575-579.
  24. Alves CF, De Amorim IFG, Moura EP, Ribeiro RR, Alves CF, Michalick MS, Kalapothakis E, Bruna-Romero O, Tafuri WL, Teixeira MM, Melo MN. Expression of IFN-gamma, TNF-alpha, IL-10 and TGF-beta in lymph nodes associates with parasite load and clinical form of disease in dogs naturally infected with Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol 2009; 128: 349-358. https://doi.org/10.1016/j.vetimm.2008.11.020
  25. Paim FC, Duarte M, Wolkmer P, Da Silva AS, Monteiro SG, Mazzantti CM, Lopes STA. Cytokines in rats experimentally infected with Trypanosoma evansi. Exp Parasitol 2011; 128: 365-370. https://doi.org/10.1016/j.exppara.2011.04.007
  26. Vespa GNR, Cunha FQ, Silva JS. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Imm 1994; 62: 5177-5182.
  27. Naviliat M, Gualco G, Cayota A, Radi R. Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice. Braz J Med Biol Res 2005; 18: 1825-1834.
  28. Boutlis CS, Weinberg JB, Baker J, Bockarie MJ, Mgone CS, Cheng Q, Anstey NM. Nitric oxide production and nitric oxide synthase activity in malaria-exposed Papua New Guinean children and adults show longitudinal stability and no association with parasitemia. Infect Imm 2004; 72: 6932-6938. https://doi.org/10.1128/IAI.72.12.6932-6938.2004
  29. Titus RG, Sherry B, Cerami A. The involvement of TNF, IL-1 and IL-6 in the immune response to protozoan parasites. Trends Immunol 1991; 12: A13-A16. https://doi.org/10.1016/S0167-5699(05)80005-2
  30. Ahmed JS. The role of cytokines in immunity and immunopathogenesis of piroplasmoses. Parasitol Res 2002; 88: S48-S50.
  31. Faria JLM, Munhoz TD, Joao CF, Vargas-Hernandez G, Andre MR, Pereira WAB, Machado RZ, Tinucci-Costa M. Ehrlichia canis (Jaboticabal strain) induces the expression of TNF-${\alpha}$ in leukocytes and splenocytes of experimentally infected dogs. Rev Bras Parasitol Vet 2011; 20: 71-74. https://doi.org/10.1590/S1984-29612011000100015
  32. Bitsaktis C, Huntington J, Winslow G. Production of IFN-${\gamma}$ by CD4 T cells is essential for resolving Ehrlichia infection. J Immunol 2004; 172: 6894-6901.
  33. Nazifi S, Razavi SM, Kaviani F, Rakhshandehroo E. Acute phase response in cattle infected with Anaplasma marginale. Vet Microbiol 2011; 155: 267-271.
  34. Wandurska-Nowak E. The role of nitric oxide (NO) in parasitic infections. Wiad Parazytol 2004; 50: 665-678.
  35. Nahrevanian H. Involvement of nitric oxide and its up/down stream molecules in the immunity against parasitic infections. Braz J Infect Dis 2009; 13: 440-448.
  36. Stich RW, Shoda LKM, Dreewes M, Adler B, Jungi TW, Brown WC. Stimulation of nitric oxide production in macrophages by Babesia bovis. Infect Imm 1998; 66: 4130-4136.
  37. Brown WC, Norimine J, Knowles DP, Goff WL. Immune control of Babesia bovis infection. Vet Parasitol 2006; 138: 75-87. https://doi.org/10.1016/j.vetpar.2006.01.041
  38. Deger S, Deger Y, Bicek K, Ozdal N, Abdurrahman G. Status of lipid peroxidation, antioxidants, and oxidation products of nitric oxide in equine babesiosis: status of antioxidant and oxidant in equine babesiosis. J Eq Vet Sci 2009; 29: 743-747. https://doi.org/10.1016/j.jevs.2009.07.014

피인용 문헌

  1. Increased concentration of serum TNF alpha and its correlations with arterial blood pressure and indices of renal damage in dogs infected with Babesia canis vol.113, pp.4, 2013, https://doi.org/10.1007/s00436-014-3792-1
  2. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0150113
  3. Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis vol.13, pp.None, 2013, https://doi.org/10.1186/s12917-017-1020-9
  4. Cytokine Concentrations Measured by Multiplex Assays in Canine Peripheral Blood Samples vol.55, pp.1, 2013, https://doi.org/10.1177/0300985817725388
  5. Disease severity and blood cytokine concentrations in dogs with natural Babesia rossi infection vol.41, pp.7, 2013, https://doi.org/10.1111/pim.12630