DOI QR코드

DOI QR Code

Sturdy of analysis of Xanthan gum as watersoluble-polymer in cosmetics

화장품 중 수용성 고분자인 Xanthan gum 분석연구

  • Lee, Yong-Hwa (Hoseo University, Fusion technology) ;
  • Yang, Jae-Chan (Mokwon University, College of Sciences & Technology, Division of Biomedicinal & Cosmetics)
  • 이용화 (호서대학교 융합기술연구소) ;
  • 양재찬 (목원대학교 테크노과학대학 생의약화장품학부)
  • Received : 2013.12.09
  • Accepted : 2013.12.27
  • Published : 2013.12.30

Abstract

Determination of xanthan gum as watersoluble-polymer in commercial cosmetic samples was carried out by High Perfomance Liquid Chromatography(HPLC). An $C_{18}$ reversed-phase column and the selected ELSD detector was applied. The 25mM ammonium acetate/acetonitrile was used for the mobile phase of gradient conditions. The analysis results of HPLC showed good linearity with correlation coefficient of $r^2=0.9993$ in the rage of $50.3{\sim}604.1{\mu}g/ml$ and detection limit of $12.0{\mu}g/ml$.

역상 HPLC 에 의한 화장품에 사용하는 수용성 고분자인 Xanthan gum의 간편하고 정확한 정량분석 방법을 개발하였다. 분석조건은 $C_{18}$분리관과 ELSD 검출기를 사용하였으며, 25mM ammonium acetate/acetonitrile의 기울기 용리에 의해 분리 되었다. 이때 검량선의 상관계수(correlation coefficient) $r^2=0.9993$, 정량범위 $50.3{\sim}604.1{\mu}g/ml$, 검출한계 $12.0{\mu}g/ml$ 및 정확성이 우수하였다. 이 방법은 화장품 중 Xanthan gum를 정확하고 간편하게 정량분석 가능함을 보여 주었다.

Keywords

References

  1. Ahamadi S, Batchelor B, Koseoglu SS. The diafiltration method for the study of the binding of macromolecules to heavy metal ions. J Membr Sci,. 89, 257(1994). https://doi.org/10.1016/0376-7388(94)80107-X
  2. Tomida T, Inoue T, Tsuchiya K, Masuda S. Concentration and/or removal of metal ions using a water-soluble chelating polymer and microporous hollow fiber membrane. Ind Eng Chem Res, 33, 904(1994). https://doi.org/10.1021/ie00028a017
  3. Geckeler K, Lange G, Eberhardt H, Bayer E. Preparation and application of watersoluble polymer-metal complexes. Pure Appl Chem, 52, 1883(1980).
  4. Spivakov BYa, Geckeler K, Bayer E. Liquid-phase polymer based retention technique: the separation of metals by ultrafiltration on polychelatogens. Nature, 315, 313(1985). https://doi.org/10.1038/315313a0
  5. Huck W. Thematic issue on functional polymers. Chem Soc Rev, 34, 191(2005). https://doi.org/10.1039/b501604p
  6. Sanchez JC, Trogler WC. Hydrosilylation of diynes as a route to functional polymers delocalized through silicon. Macromol Chem Phys, 209, 1527(2008). https://doi.org/10.1002/macp.200800235
  7. Li C, Li Y. The process of functional conjugated organic polymers derived from triple-bond building blocks. Macromol Chem Phys, 209, 1541(2008). https://doi.org/10.1002/macp.200800049
  8. Saeed I, Shida Y, Khan FZ, Shiotsuki M, Masuda T. Poly(phenylacetylene)s carrying siloxy, carbonate, and hydroxy groups: synthesis and properties. Macromol Chem Phys, 209, 1308(2008). https://doi.org/10.1002/macp.200800029
  9. Mc Cormick CL, Lowe AB. Aqueous RAFT polymerization: recent developments insynthesis of functionalwater-soluble (co)polymers with controlled structures. Acc Chem Res 37, 312(2004). https://doi.org/10.1021/ar0302484
  10. R. Y. Lochhead, The role of polymers in cosmetics: recent trends, in: Cosmetic Nanotechnology, ACS Symposium Series American Chemical Society, 961, 3(2007).
  11. J.M. Quintana, A.N. Califano, N.E. Zaritzky, P. Partal, J.M. Franco, Linear and nonlinear viscoelastic behavior of oil-in-water emulsions stabilized with polysaccharides, J. Texture Studies, 33, 215(2002). https://doi.org/10.1111/j.1745-4603.2002.tb01346.x
  12. R.P. Vianna-Filho, C.L.O. Petkowicz, J.L.M. Silveira, Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides, Carbohydr. Polym. (2012).
  13. D. Bais, A. Trevisan, R. Lapasin, P. Partal, C. Gallegos, Rheological characterization of polysaccharide-surfactant matrices for cosmetic O/W emulsions, J. Colloid Interface Sci., 290, 546(2005). https://doi.org/10.1016/j.jcis.2005.04.044
  14. H.-M. Ribeiro, J.-A. Morais, G.-M. Eccleston, Structure and rheology of semisolid O/W creams containing cetyl alcohol/non-ionic surfactant mixed emulsifier and different polymers, Int. J. Cosmetic Sci., 26, 47(2004). https://doi.org/10.1111/j.0412-5463.2004.00190.x
  15. R. Pal, Viscoelastic properties of polymerthickened oil-in-water emulsions, Chem. Eng. Sci., 51, 3299(1996). https://doi.org/10.1016/0009-2509(95)00393-2
  16. E. Kettler, C.B. Muller, R. Klemp, M. Hloucha, T. Doring, W. Rybinski, W. Richtering, Polymer-stabilized emulsions: influence of emulsion components on rheological properties and droplet size, in: G. Auernhammer, H.-J. Butt, D.et Vollmer (Eds.), in: Surface and Interfacial Forces - From Fundamentals to Applications, Springer-Verlag, Berlin, Heidelberg, 134, 90(2008).
  17. W. W. Tau, J. J. Kirkland, and D>d> Blv. "Modern Size-Exclusion Liquid Chromatography, Practice of Gel Permition and Gel Filteration Chromatograph", ed, John Wiley & Sons, New Tork(1979).
  18. S. T. Balke, "Chracterization of Complex Polymers by Size Exclusion Chromatography and High Perfomance Liquid Chromatography" H. G. Barth, Mays, J.W. (Ed), in "Modern Methods of Polymer Chracterization" John Wiley & Sons, New Tork(1991).
  19. C. Viebke, P.A.Williams, Determination of molecular mass distribution of k-carrageenan and xanthan using asymmetrical flow field-flow fractionation, Food Hydrocolloids, 14, 265(2000). https://doi.org/10.1016/S0268-005X(99)00066-1
  20. Kazunori Se, Takuya Sakakibara, Etsuyo Ogawa, Molecular weight determination of star polymers and star block copolymers using GPC equipped with low-angle laser light-scattering, Polymer, 43, 5447(2002). https://doi.org/10.1016/S0032-3861(02)00410-X
  21. Yonggang Liu, Shu,qin Bo,Yejuan Zhu, Wenhe Zhang, Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light cattering detector, Polymer, 44, 7209(2003). https://doi.org/10.1016/j.polymer.2003.08.037
  22. W.W. Yau, J.J. Kirkland,and D.D. Bly, Modernsize - exclusionLiquid Chromatodraph, John Wiley&Sons, NewYork(1979).
  23. K. Kwon and T. Chang, Poly (3,4-ethylenedioxythiophene)V2O5 hybrids for lithium batteries, polym, Sci, Tech, 13, 384(2002).
  24. M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem., 60, 2299(1988). https://doi.org/10.1021/ac00171a028
  25. D.C. Schriemer and L. Li, Detection of High Molecular Weight Narrow Polydisperse Polymers up to 1.5 Million Daltons by MALDI Mass Spectrometry, Anal. Chem., 68, 2721(1996). https://doi.org/10.1021/ac960442m
  26. R. S. Brown and J. J. Lennon,Mass Resolution Improvement by Incorporation of Pulsed Ion Extraction in a Matrix-Assisted Laser Desorption/Ionization Linear Time-of-Flight Mass Spectrometer, Anal. Chem., 67, 1998(1996).
  27. C. A. Jackson and W. J. Simonstick Jr., Application of mass spectrometry to the characterization of polymers, Current Opinionin Solid State & Materials Science, 2, 661(1997). https://doi.org/10.1016/S1359-0286(97)80006-X