Cerebellar Control of Saccades

소뇌의 단속안구운동 조절

  • Choi, Jae-Hwan (Department of Neurology, Pusan National University Yangsan Hospital) ;
  • Choi, Kwang-Dong (Department of Neurology, Pusan National University College of Medicine)
  • 최재환 (양산부산대학교병원 신경과) ;
  • 최광동 (부산대학교 의과대학 신경과학교실)
  • Received : 2013.12.10
  • Accepted : 2013.12.17
  • Published : 2013.12.30

Abstract

Saccades are rapid eye movements that shift the line of sight between successive points of fixation. The cerebellum calibrates saccadic amplitude (dorsal vermis and fastigial nucleus) and the saccadic pulse-step match (flocculus) for optimal visuo-ocular motor behavior. Based on electrophysiology and the pharmacological inactivation studies, early activity in one fastigial nucleus could be important for accelerating the eyes at the beginning of a saccade, and the later activity in the other fastigial nucleus could be critical for stopping the eye on target, which is controlled by inhibitory projection from the dorsal vermis. The cerebellum could monitor a corollary discharge of the saccadic command and terminate the eye movement when it is calculated to be on target. The fastigial nucleus and dorsal vermis also participate in the adaptive control of saccadic accuracy.

Keywords

References

  1. Pierrot-Deseilligny C, Rivaud S, Gaymard B, Muri RM, Vermersch AI. Cortical control of saccades. Ann Neurol 1995;37:557-567. https://doi.org/10.1002/ana.410370504
  2. Zee DS, Optican LM, Cook JD, Robinson DA, Engel WK. Slow saccades in spinocerebellar degeneration. Arch Neurol 1976;33: 243-251. https://doi.org/10.1001/archneur.1976.00500040027004
  3. Scudder CA. A new local feedback model of the saccadic burst generator. J Neurophysiol 1988;59:1455-1475. https://doi.org/10.1152/jn.1988.59.5.1455
  4. Cohen B, Komatsuzaki A, Bender MB. Electrooculographic syndrome in monkeys after pontine reticular formation lesions. Arch Neurol 1968;18:78-92. https://doi.org/10.1001/archneur.1968.00470310092008
  5. Kaneko CRS. Hypothetical explanation of selective saccadic palsy caused by pontine lesion. Neurology 1989;39:994-995. https://doi.org/10.1212/WNL.39.7.994
  6. Büttner-Ennever JA, Büttner U. A cell group associated with vertical eye movements in the rostral mesencephalic reticular formation of the monkey. Brain Res 1978;151:31-47. https://doi.org/10.1016/0006-8993(78)90948-4
  7. Voogd J, Barmack NH. Oculomotor cerebellum. In: Büttner- Ennever JA, ed. Neuroanatomy of the oculomotor system. Prog Brain Res 2006;151:231-268. https://doi.org/10.1016/S0079-6123(05)51008-2
  8. Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 1990;302:330-348. https://doi.org/10.1002/cne.903020211
  9. May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD. Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 1990;36:305-324. https://doi.org/10.1016/0306-4522(90)90428-7
  10. Ohtsuka K, Noda H. Saccadic burst neurons in the oculomotor region of the fastigial neurons in macaque monkeys. J Neurophysiol 1992;65:1422-1434.
  11. Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge patterns. J Neurophysiol 1993;70:1723-1740. https://doi.org/10.1152/jn.1993.70.5.1723
  12. Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 1993;70:1741-1758.
  13. Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol 1995;74:1828-1840. https://doi.org/10.1152/jn.1995.74.5.1828
  14. Noda H, Fujikado T. Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 1987;58:359-378. https://doi.org/10.1152/jn.1987.58.2.359
  15. Ron S, Robinson DA. Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 1973;1004-1022.
  16. Sato H, Noda H. Saccadic dysmetria induced by transient functional decortication of the cerebellar vermis. Exp Brain Res 1992;88:455-458. https://doi.org/10.1007/BF02259122
  17. Büttner-Ennever JA, Horn AK. Pathways from cell groups of the paramedian tracts to the floccular region. Ann N Y Acad Sci 1996;781:532-540. https://doi.org/10.1111/j.1749-6632.1996.tb15726.x
  18. Desmurget M, Pelisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C, et al. Functional adaptation of reactive saccades in humans. A PET study. Exp Brain Res 2000;132:243-259. https://doi.org/10.1007/s002210000342
  19. Robinson FR, Fuchs AF, Noto CT. Cerebellar influences on saccade plasticity. Ann N Y Acad Sci 2002;956:155-163. https://doi.org/10.1111/j.1749-6632.2002.tb02816.x
  20. Scudder CA, McGee DM. Adaptive modification of saccade size produces correlated changes in the discharges of fastigial nucleus neurons. J Neurophysiol 2003;90:1011-1026. https://doi.org/10.1152/jn.00193.2002
  21. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 1998;80:1911-1930.
  22. Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology 2001;57: 2105-2108. https://doi.org/10.1212/WNL.57.11.2105