DOI QR코드

DOI QR Code

Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv 'Embul'

  • Abayasekara, C.L. (Department of Botany, University of Peradeniya) ;
  • Adikaram, N.K.B. (Department of Botany, University of Peradeniya) ;
  • Wanigasekara, U.W.N.P. (Department of Botany, University of Peradeniya) ;
  • Bandara, B.M.R. (Department of Chemistry, University of Peradeniya)
  • Received : 2012.06.15
  • Accepted : 2012.10.19
  • Published : 2013.03.01

Abstract

Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar 'Embul' (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and ${\beta}$-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. $^1H$ and $^{13}C$ NMR spectral data of one purified phytoalexin compared closely with 4'-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana.

Keywords

References

  1. Adikaram, N. K. B., Brown, A. E. and Swinburne, T. R. 1988. Phytoalexin induction as a factor in the protection of Capsicum annuum L. fruits against infection by Botrytis cinerea. Pers. J. Phytopathol 122:267−273. https://doi.org/10.1111/j.1439-0434.1988.tb01016.x
  2. Adikaram, N. K. B. 1990. Possibility of control of postharvest fungal disease by manipulation of host defence system. Proceedings of the 3rd International Conference on Plant Protection in the Tropics, Genting Highlands, Pahang, Malaysia, 20− 23 March 1990. (V), 31−36.
  3. Adikaram, N. K. B., Joyce, D. C. and Terry, L. A. 2002. Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Austral. Plant Pathol. 31:223−229. https://doi.org/10.1071/AP02017
  4. Adikaram, N. K. B. and Bandara, B. M. R. 1998. Methodology for studying defense mechanisms against fungal pathogens-An Overview. In: Disease resistance in fruits (Eds) G.I. Johnson, E. Highley, and D. C. Joyce, ACIAR Proceedings No. 80, 177−185.
  5. Brown, A. E. and Swinburne, T. R. 1980. The resistance of immature banana fruits to anthracnose [Colletotrichum musae (Berk. & Curt.)Arx.]. J. Phytopathol. 99: 70-80. https://doi.org/10.1111/j.1439-0434.1980.tb03762.x
  6. Dann, E. K. and Deverall, B. J. 2000. Activation of systemic acquired resistance in pea by an avirulent bacterium or a benzothiadiazole, but not by a fungal leaf spot pathogen. Plant Pathol. 49:324−332.
  7. De Ascensao, A. R. D. C. F. and Dubery, I. A. 2003. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry 63:679−686.
  8. Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., Duarte, J., Borges, A. and Teixeira, A. R. 2007. The role of plant defense proteins in fungal pathogenesis. Mol. Plant. Pathol. 8:677-700. https://doi.org/10.1111/j.1364-3703.2007.00419.x
  9. Hirai, N., Ishida, H. and Koshimizu, K. 1994. A phenalenonetype phytoalexin from Musa acuminata. Phytochemistry 37:383−385.
  10. Jeffries, P., Dodd, J. C., Jeger, M. J. and Plumbley, R. A. 1990. The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathol. 39:344−366.
  11. Johansen, D. A. 1940. Plant microtechnique. McGraw-Hill, New York.
  12. Kamo, T., Kato, N., Hirai, N., Tsuda, M., Fujioka, D. and Ohigashi, H. 1998. Phenylphenalenone-type phytoalexins from unripe Bungulan banana fruit. Biosci. Biotech. Bioch. 62:95-101. https://doi.org/10.1271/bbb.62.95
  13. Kamo, T., Hirai, N., Tsuda, M., Fujioka, D. and Ohigashi, H. 2000. Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci. Biotech. Bioch. 64:2089−2098.
  14. Kamo, T., Hirai, N., Iwami, K., Fujioka, D. and Ohigashi, H. 2001. New phenylphenalenones from banana fruit. Tetrahedron 57:7649−7656. https://doi.org/10.1016/S0040-4020(01)00749-9
  15. Kesari, R., Trivedi, P. K. and Nath, P. 2010. Gene expression of pathogenesis-related protein during banana ripening and after treatment with 1-MCP. Postharvest Biol. Tec. 56:64-70. https://doi.org/10.1016/j.postharvbio.2009.11.012
  16. Klarman, W. L. and Stanford, J. L. 1968. Isolation and purification of an antifungal principle from infected soya beans. Life Sci. 7:1095−1103.
  17. Leone, P., Menu-Bouaouiche, L., Peumans, W. J., Payan, F., Barre, A., Roussel, A., Van Damme, E. J. M. and Rouge, P. 2006. Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-A. Biochimie 88: 45-52. https://doi.org/10.1016/j.biochi.2005.07.001
  18. Lewis, N. G. and Yamamoto, E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:455−496.
  19. Liberato, J. R., Van Brunschot, S., Grice, K., Henderson, J., Shivas, R. G. 2006. Banana freckle (Guignardia musae) Pest and Diseases Image Library. Department of Primary Industries and Fisheries, Queensland, Australia. http://www.padil.gov.au
  20. Luis, J. G., Echeverri, F., Quinones, W., Brito, I., Lopez, M., Torres, F., Cardona, G., Aguiar, Z., Pelaez, C. and Rojas, M. 1993. Irenolone and Emenolone: Two new types of phytoalexin from Musa paradisiaca. J. Org. Chem. 58:4306−4308.
  21. Luis, J. G., Flecther, Q. W., Echeverri, F., Abad, T., Kishi, P. M. and Perales, A. 1995. New phenalenone-type phytoalexins from Musa acuminata (COLLA AAA) Grand nain. Nat. Product Lett. 6:23−30.
  22. Luis, J. G., Quinones, W., Echeverri, F., Grillo, T. A., Kishi, M. P., Garcia-Garcia, F., Torres, F. and Cardona, G. 1996. Musanolones: four 9-phenylphenalenones from rhizomes of Musa acuminata. Phytochemistry 41:753−757.
  23. Martinez-Tellez, and M. A. and Lafuente, M. T. 1993. Chilling-induced changes in phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase activities in citrus flavedo tissue. Acta Hort. 343:257−263.
  24. Muirhead, I. F. and Deverall, B. J. 1981. Role of appressoria in latent infection of banana fruits by Colletotrichum musae. Physiol. Plant Pathol. 19:77−84.
  25. Otalvaro, F., Echeverri, F., Quinones, W., Torres, F. and Schneider, B. 2002. Correlation between phenylphenalenone phytoalexins and phytopathological properties in Musa and the role of a dihydrophenylephenalene. Triol. Molecules 7:331−340.
  26. Peumans, W. J., Barre, A., Derycke, V., Rouge, P., Zhang, W., May, D. G., Delcour, J. A., Leuven, F. V. and Van Damme, E. J. M. 2000. Purification, characterization and structural analysis of an abundant $\beta$-1,3-glucanase from banana fruit. Eur. J. Biochem. 267:1188−1195. https://doi.org/10.1046/j.1432-1327.2000.01117.x
  27. Prusky, D., Fuchs, Y. and Zauberman, G. A. 1981. A method for preharvest assessment of latent infections in fruits. Ann. Appl. Biol. 98:79−85.
  28. Quinones, W., Escobar, G., Echeverri, F., Torres, F., Rosero, Y., Arango, V., Cardona, G. and Gallego, A. 2000. Synthesis and antifungal activity of Musa phytoalexins and structural analogs. Molecules 5:974−980.
  29. Simmonds, J. H. 1963. Studies in the latent phase of Colletotrichum species causing rots of tropical fruits. Qd. J. Agric. Sci. 20:373−424.
  30. Tang, W., Zhua, S., Lia, L., Liua, D. and Irving, D. E. 2010. Differential expressions of PR1 and chitinase genes in harvested bananas during ripening, and in response to ethephon, benzothiadizole and methyl jasmonate. Postharvest Biol. Tec. 57:86-91. https://doi.org/10.1016/j.postharvbio.2010.02.007
  31. Terry, L. A. and Joyce, D. C. 2004. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biol. Tec. 32:1−13.
  32. Trudel, J. and Asselin, A. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178:362-366. https://doi.org/10.1016/0003-2697(89)90653-2
  33. Van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis related proteins. Eur. J. Plant Pathol. 103:753-765. https://doi.org/10.1023/A:1008638109140
  34. Yue-Ming, J. 1997. Incidence of anthracnose in relation to chitinase, $\beta$-1,3-glucanase and dopamine of banana fruits after harvest. Acta Photophysiol. Sinica 23:158−162.
  35. Zou, X., Nonogaki, H. and Welbaum, G. E. 2002. A gel diffusion assay for visualization and quantification of chitinase activity. Mol. Biotechnol. 22:19−23.