DOI QR코드

DOI QR Code

Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia

만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정

  • Lee, Hong-Rae (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kim, Mi-Ju (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Ha, Gahee (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kim, So-Jung (MD-PhD program, Pusan National University School of Medicine) ;
  • Kim, Sun-Hee (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kang, Chi-Dug (Department of Biochemistry, Pusan National University School of Medicine)
  • 이홍래 (부산대학교 의학전문대학원 생화학교실) ;
  • 김미주 (부산대학교 의학전문대학원 생화학교실) ;
  • 하가희 (부산대학교 의학전문대학원 생화학교실) ;
  • 김소중 (부산대학교 의학전문대학원 의사과학자 복합학위과정) ;
  • 김선희 (부산대학교 의학전문대학원 생화학교실) ;
  • 강치덕 (부산대학교 의학전문대학원 생화학교실)
  • Received : 2013.01.18
  • Accepted : 2013.02.14
  • Published : 2013.02.28

Abstract

The present study investigated whether leukemia-maintaining cells reside in a differentiation-resistant fraction using a megakaryocytic differentiation model of K562 cells. Treatment with phorbol-12-myristate-13-acetate (PMA) significantly inhibited the colony-forming efficiency of the K562 cells. At a PMA concentration of 1 nM or higher, colony was not formed, but approximately 40% of K562 cells still survived in soft agar. Approximately 70% of colony-forming cells that were isolated following the removal of PMA after exposure to the agent were differentiated after treatment with 10 nM PMA for 3 days. The differentiation rate of the colony-forming cells was gradually increased and reached about 90% 6 weeks after colony isolation, which was comparable to the level of a PMA-treated K562 control. Meanwhile, imatinib-resistant variants from the K562 cells, including K562/R1, K562/R2, and K562/R3 cells, did not show any colony-forming activity, and most imatinib-resistant variants were CD44 positive. After 4 months of culture in drug-free medium, the surface level of CD44 was decreased in comparison with primary imatinib-resistant variants, and a few colonies were formed from K562/R3 cells. In these cells, Bcr-Abl, which was lost in the imatinib-resistant variants, was re-expressed, and the original phenotypes of the K562 cells were partially recovered. These results suggest that leukemia-maintaining cells might reside in a differentiation-resistant population. Differentiation therapy to eliminate leukemia-maintaining cells could be a successful treatment for leukemia if the leukemia-maintaining cells were exposed to a differentiation inducer for a long time and at a high dose.

본 연구에서는 K562 만성 골수성 백혈병 세포를 이용하여, 분화 유도에 의해 암 유지/개시 세포의 자기 재생능력이 소실되는 지를 조사하였다. K562 세포의 집락(colony) 형성 능력은 PMA 처리에 의하여 현저히 억제되었고, 1 nM 이상의 PMA 처리시에는 집락이 형성되지 않았으나, 약 40%의 세포는 여전히 연한천(soft agar)에서 살아 있었다. PMA 4 nM을 3일간 처리하고 제거한 후 분리한 집락 형성 세포에 다시 10 nM PMA를 3일간 처리하였을 때, 약 70% 정도의 세포가 분화되었고, 6주 후에 PMA를 처리하였을 때는 분화율이 약 90%로 K562 모세포에 PMA를 처리한 수준에 도달하였다. 한편, imatinib-내성 K562 변종 세포들은 연한천에서 집락을 형성하지 않았으며, 대부분의 세포가 CD44 양성이었다. Imatinib 무첨가 배지에서 4개월 배양 후, 이 세포들의 표면 CD44발현량은 감소하였고, K562/R3 imatinib-내성 변종 세포에서는 연한천에서 작은 집락이 형성되었다. 이 세포에서는 imatinib-내성 변종 세포에서 소실되었던 Bcr-Abl이 다시 발현되기 시작하였고, 다른 표현형들도 부분적으로 회복되었다. 이러한 결과는 백혈병 유지 세포가 분화에 내성을 나타내는 세포이며, 분화 유도제를 오랜 기간 동안 고농도로 처리할 수 있다면 백혈병 줄기 세포를 제거하기 위한 분화 요법이 백혈병 치료에 적용될 수 있음을 시사하였다.

Keywords

References

  1. Ades, L., Chevret, S., De Botton, S., Thomas, X., Dombret, H., Beve, B., Sanz, M., Guerci, A., Miguel, J. S., Dela Serna, J., Garo, C., Stoppa, A. M., Reman, O., Stamatoulas, A., Fey, M., Cahn, J. Y., Sotto, J. J., Bourhis, J. H., Parry, A., Chomienne, C., Degos, L. and Fenaux, P. 2005. Outcome of acute promyelocytic leukemia treated with all trans retinoic acid and chemotherapy in elderly patients: the European group experience. Leukemia 19, 230-233. https://doi.org/10.1038/sj.leu.2403597
  2. Al Bahar, S., Pandita, R., Bavishi, K. and Kreze, O. 2004. All-transretinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Indian J Cancer 41, 125-128.
  3. Alison, M. R., Islam, S. and Wright, N. A. 2010. Stem cells in cancer: instigators and propagators? J Cell Sci 123, 2357-2368. https://doi.org/10.1242/jcs.054296
  4. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D. and Rich, J. N. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760. https://doi.org/10.1038/nature05236
  5. Bhatia, R., Holtz, M., Niu, N., Gray, R., Snyder, D. S., Sawyers, C. L., Arber, D. A., Slovak, M. L. and Forman, S. J. 2003. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701-4707. https://doi.org/10.1182/blood-2002-09-2780
  6. Bigner, S. H., Bullard, D. E., Pegram, C. N., Wikstrand, C. J. and Bigner, D. D. 1981. Relationship of in vitro morphologic and growth characteristics of established human glioma- derived cell lines to their tumorigenicity in athymic nude mice. J Neuropathol Exp Neurol 40, 390-409. https://doi.org/10.1097/00005072-198107000-00004
  7. Bots, M. and Johnstone, R. W. 2009. Rational combinations using HDAC inhibitors. Clin Cancer Res 15, 3970-3977. https://doi.org/10.1158/1078-0432.CCR-08-2786
  8. Campos, B., Wan, F., Farhadi, M., Ernst, A., Zeppernick, F., Tagscherer, K. E., Ahmadi, R., Lohr, J., Dictus, C., Gdynia, G., Combs, S. E., Goidts, V., Helmke, B. M., Eckstein, V., Roth, W., Beckhove, P., Lichter, P., Unterberg, A., Radlwimmer, B. and Herold-Mende, C. 2010. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16, 2715-2728. https://doi.org/10.1158/1078-0432.CCR-09-1800
  9. Corbin, A. S., Agarwal, A., Loriaux, M., Cortes, J., Deininger, M. W. and Druker, B. J. 2011. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121, 396-409. https://doi.org/10.1172/JCI35721
  10. Das, A., Banik, N. L. and Ray, S. K. 2008. Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J Neurooncol 87, 9-22. https://doi.org/10.1007/s11060-007-9485-1
  11. Dean, M., Fojo, T. and Bates, S. 2005. Tumour stem cells and drug resistance. Nat Rev Cancer 5, 275-284. https://doi.org/10.1038/nrc1590
  12. Degos, L. and Wang, Z. Y. 2001. All trans retinoic acid in acute promyelocytic leukemia. Oncogene 20, 7140-7145. https://doi.org/10.1038/sj.onc.1204763
  13. Diehn, M. and Clarke, M. F. 2006. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 98, 1755-1757. https://doi.org/10.1093/jnci/djj505
  14. Elliott, A., Adams, J. and Al-Hajj, M. 2010. The ABCs of cancer stem cell drug resistance. IDrugs 13, 632-635.
  15. Facchino, S., Abdouh, M., Chatoo, W. and Bernier, G. 2010. BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 30, 10096-10111. https://doi.org/10.1523/JNEUROSCI.1634-10.2010
  16. Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y. M. and Eberhart, C. G. 2006. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66, 7445-7452. https://doi.org/10.1158/0008-5472.CAN-06-0858
  17. Fenaux, P., Chastang, C., Chevret, S., Sanz, M., Dombret, H., Archimbaud, E., Fey, M., Rayon, C., Huguet, F., Sotto, J. J., Gardin, C., Makhoul, P. C., Travade, P., Solary, E., Fegueux, N., Bordessoule, D., Miguel, J. S., Link, H., Desablens, B., Stamatoullas, A., Deconinck, E., Maloisel, F., Castaigne, S., Preudhomme, C. and Degos, L. 1999. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 94, 1192-1200.
  18. Frank, N. Y., Schatton, T. and Frank, M. H. 2010. The therapeutic promise of the cancer stem cell concept. J Clin Invest 120, 41-50. https://doi.org/10.1172/JCI41004
  19. Garvalov, B. K. and Acker, T. 2011. Cancer stem cells: a new framework for the design of tumor therapies. J Mol Med (Berl) 89, 95-107. https://doi.org/10.1007/s00109-010-0685-3
  20. Graham, S. M., Jorgensen, H. G., Allan, E., Pearson, C., Alcorn, M. J., Richmond, L. and Holyoake, T. L. 2002. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319-325. https://doi.org/10.1182/blood.V99.1.319
  21. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A. and Lander, E. S. 2009. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645-659. https://doi.org/10.1016/j.cell.2009.06.034
  22. Gupta, V., Yi, Q. L., Brandwein, J., Lipton, J. H., Messner, H. A., Schuh, A. C., Wells, R. A. and Minden, M. D. 2005. Role of all-trans-retinoic acid (ATRA) in the consolidation therapy of acute promyelocytic leukaemia (APL). Leuk Res 29, 113-114. https://doi.org/10.1016/j.leukres.2004.05.006
  23. Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  24. Hocevar, B. A., Morrow, D. M., Tykocinski, M. L. and Fields, A. P. 1992. Protein kinase C isotypes in human erythroleukemia cell proliferation and differentiation. J Cell Sci 101 (Pt 3), 671-679.
  25. Iovino, F., Meraviglia, S., Spina, M., Orlando, V., Saladino, V., Dieli, F., Stassi, G. and Todaro, M. 2010. Immunotherapy targeting colon cancer stem cells. Immunotherapy 3, 97-106.
  26. Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S., Legros, L., Deckert, M., Mari, B., Cassuto, J. P., Hofman, P. and Auberger, P. 2006. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25, 781-794. https://doi.org/10.1038/sj.onc.1209119
  27. Kim, K. W., Kim, S. H., Lee, E. Y., Kim, N. D., Kang, H. S., Kim, H. D., Chung, B. S. and Kang, C. D. 2001. Extracellular signal-regulated kinase/90-KDA ribosomal S6 kinase/nuclear factor-kappa B pathway mediates phorbol 12-myristate 13-acetate-induced megakaryocytic differentiation of K562 cells. J Biol Chem 276, 13186-13191. https://doi.org/10.1074/jbc.M008092200
  28. Lee, S. M., Bae, J. H., Kim, M. J., Lee, H. S., Lee, M. K., Chung, B. S., Kim, D. W., Kang, C. D. and Kim, S. H. 2007. Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 322, 1084-1092. https://doi.org/10.1124/jpet.107.124461
  29. Lotem, J. and Sachs, L. 2006. Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene 25, 7663-7672. https://doi.org/10.1038/sj.onc.1209816
  30. Lozzio, B. B., Lozzio, C. B., Bamberger, E. G. and Feliu, A. S. 1981. A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med 166, 546-550. https://doi.org/10.3181/00379727-166-41106
  31. Massard, C., Deutsch, E. and Soria, J. C. 2006. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17, 1620-1624. https://doi.org/10.1093/annonc/mdl074
  32. Moll, J., Khaldoyanidi, S., Sleeman, J. P., Achtnich, M., Preuss, I., Ponta, H. and Herrlich, P. 1998. Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 102, 1024-1034. https://doi.org/10.1172/JCI2494
  33. Naka, K., Hoshii, T. and Hirao, A. 2010. Novel therapeutic approach to eradicate tyrosine kinase inhibitor resistant chronic myeloid leukemia stem cells. Cancer Sci 101, 1577-1581. https://doi.org/10.1111/j.1349-7006.2010.01584.x
  34. Ohno, R., Asou, N. and Ohnishi, K. 2003. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia 17, 1454-1463. https://doi.org/10.1038/sj.leu.2403031
  35. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F. and Vescovi, A. L. 2006. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761-765. https://doi.org/10.1038/nature05349
  36. Sanz, M. A., Martin, G., Gonzalez, M., Leon, A., Rayon, C., Rivas, C., Colomer, D., Amutio, E., Capote, F. J., Milone, G. A., De La Serna, J., Roman, J., Barragan, E., Bergua, J., Escoda, L., Parody, R., Negri, S., Calasanz, M. J. and Bolufer, P. 2004. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood 103, 1237-1243.
  37. Scatena, R., Bottoni, P., Pontoglio, A. and Giardina, B. 2011. Cancer stem cells: the development of new cancer therapeutics. Expert Opin Biol Ther 11, 875-892. https://doi.org/10.1517/14712598.2011.573780
  38. Shelly, C., Petruzzelli, L. and Herrera, R. 2000. K562 cells resistant to phorbol 12-myristate 13-acetate-induced growth arrest: dissociation of mitogen-activated protein kinase activation and Egr-1 expression from megakaryocyte differentiation. Cell Growth Differ 11, 501-506.
  39. Tamura, K., Aoyagi, M., Wakimoto, H., Ando, N., Nariai, T., Yamamoto, M. and Ohno, K. 2010. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg 113, 310-318. https://doi.org/10.3171/2010.2.JNS091607
  40. Tringali, C., Lupo, B., Cirillo, F., Papini, N., Anastasia, L., Lamorte, G., Colombi, P., Bresciani, R., Monti, E., Tettamanti, G. and Venerando, B. 2009. Silencing of membrane- associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. Cell Death Differ 16, 164-174. https://doi.org/10.1038/cdd.2008.141
  41. Tsiftsoglou, A. S., Pappas, I. S. and Vizirianakis, I. S. 2003. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-290. https://doi.org/10.1016/j.pharmthera.2003.09.002
  42. van Stijn, A., van der Pol, M. A., Kok, A., Bontje, P. M., Roemen, G. M., Beelen, R. H., Ossenkoppele, G. J. and Schuurhuis, G. J. 2003. Differences between the CD34+ and CD34- blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica 88, 497-508.
  43. Viale, A., De Franco, F., Orleth, A., Cambiaghi, V., Giuliani, V., Bossi, D., Ronchini, C., Ronzoni, S., Muradore, I., Monestiroli, S., Gobbi, A., Alcalay, M., Minucci, S. and Pelicci, P. G. 2009. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457, 51-56. https://doi.org/10.1038/nature07618
  44. Wicha, M. S., Liu, S. and Dontu, G. 2006. Cancer stem cells: an old idea--a paradigm shift. Cancer Res 66, 1883-1890; discussion 1895-1886. https://doi.org/10.1158/0008-5472.CAN-05-3153
  45. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., Lieberman, J. and Song, E. 2007. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109-1123. https://doi.org/10.1016/j.cell.2007.10.054
  46. Zhou, B. B., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C. and Dirks, P. B. 2009. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8, 806-823. https://doi.org/10.1038/nrd2137

Cited by

  1. COX-2- and endoplasmic reticulum stress-independent induction of ULBP-1 and enhancement of sensitivity to NK cell-mediated cytotoxicity by celecoxib in colon cancer cells vol.330, pp.2, 2015, https://doi.org/10.1016/j.yexcr.2014.09.008