DOI QR코드

DOI QR Code

칠면초(Suaeda japonica) expansin 유전자의 분리 및 특성 분석

Isolation and Characterization of Expansin Genes in a Halophyte, Suaeda japonica

  • 황숭택 (국립군산대학교 자연과학대학 생물학과) ;
  • 김석규 (국립군산대학교 자연과학대학 생물학과) ;
  • 나종길 (국립군산대학교 자연과학대학 생물학과) ;
  • 이점숙 (국립군산대학교 자연과학대학 생물학과) ;
  • 최동수 (국립군산대학교 자연과학대학 생물학과)
  • 투고 : 2012.11.30
  • 심사 : 2012.12.17
  • 발행 : 2013.02.28

초록

본 연구에서는 염생식물에서는 최초로 expansin 유전자를 분리하고 특성을 분석하였다. 염생식물 중 생리활성물질 등으로 최근 들어 관심의 대상이 되고 있는 칠면초로부터 expansin 유전자의 cDNA 3종을 분리, 합성하였다. 확보한 3종의 칠면초 expansin cDNA 염기서열 분석 및 단백질 1차 구조의 비교분석 결과 시스테인 잔기의 위치 및 배열간격과 트립토판의 위치, 그리고 활성부위의 일부로 생각되는 HFD 도메인이 잘 보존되어 있다는 점에서 이들이 ${\alpha}$-expansin (EXPA)에 속한다는 것을 확인하였다. 다른 식물들과 칠면초의 expansin 단백질을 대상으로 계통수를 작성한 결과, 목본성인 딸기와 대추나무의 expansin과 가장 가까운 것으로 나타났다. 칠면초는 일년생 초본이지만 생육초기에는 초본성으로 자라다가 나중에 목질화되는 경향이 있다. 따라서 칠면초의 expansin이 목본 식물의 expansin과 유사한 기능을 가질 것으로 추측할 수 있다. 고염도 환경에서의 칠면초 유식물의 생육 실험결과에 따르면 실험에 사용된 NaCl 농도범위 내에서 유식물의 생장이 현저하게 억제되지 않았을 뿐만 아니라 expansin의 발현량에도 큰 변화가 없었다. 이 결과로 미루어 내염성을 가진 식물에서는 expansin과 같은 생장관련 유전자의 발현이 NaCl의 농도에 크게 영향을 받지 않으므로 식물의 생장이 저해되지 않는다고 유추할 수 있다. 이는 염생식물인 칠면초가 고염도 환경에서 정상적으로 생육할 수 있도록 하는데 expansin이 중요한 요소 중 하나일 것이라는 점을 의미한다.

Halophytes are unique land plants that are capable of thriving in a high-salt environment. They are attracting public attention due to their ability to synthesize bioactive substances such as UV protectants or antioxidizing agents. To achieve unaffected growth under high salinity, halophytes may take advantage of the activities of cell growth factors such as expansins. Expansins are well-known cell wall proteins that are responsible for cell enlargement. They loosen cell walls, thereby contributing to actual plant growth. This study aimed to identify positive roles of expansins in the growth of halophytes. Three expansin cDNA clones were isolated from seedlings of Suaeda japonica. Comparing the deduced amino acid sequences of the expansin genes of S. japonica with those of other plant species suggested that the cDNA clones isolated from S. japonica belong to the EXPA (${\alpha}$-expansin) gene family. A phylogenetic tree based on the deduced amino acid sequences revealed that the expansins of S. japonica share a close evolutionary relationship with those of strawberry (Fragaria ananassa) and jujube (Ziziphus jujuba), both of which are woody dicots. SjEXPAs did not show any remarkable change in the gene expression level in different NaCl concentrations, providing a clue to the unaffected seedling growth of S. japonica in a high-salt environment. In conclusion, the present study presents the first report of expansin genes from halophytes and suggests a putative role for these genes in plant growth under high salinity.

키워드

참고문헌

  1. Anjanasree, K. N. and Bansal, K. C. 2003. Isolation and characterization of ripening-related expansin cDNA from tomato. J Plant Biochem Biotechnol 12, 31-35. https://doi.org/10.1007/BF03263156
  2. Cho, H. T. and Cosgrove, D. J. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14, 3237-3253. https://doi.org/10.1105/tpc.006437
  3. Cho, H. T. and Cosgrove, D. J. 2004. Expansins as agents in hormone action. pp. 262-281. In Davies, P. J. (ed.), Plant Hormones 3rd edn. Kluwer Academic, Dordrecht.
  4. Cho, H. T. and Kende, H. 1997a. Expansins in deepwater rice inter-nodes. Plant Physiol 113, 1137-1143. https://doi.org/10.1104/pp.113.4.1137
  5. Cho, H. T. and Kende, H. 1997b. Expansins and internodal growth of deepwater rice. Plant Physiol 113, 1145-1151.
  6. Cho, H. T. and Kende, H. 1997c. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9, 1661-1671. https://doi.org/10.1105/tpc.9.9.1661
  7. Choi, D., Cho, H. T. and Lee, Y. 2006. Expansins: expanding importance in plant growth and development. Plant Physiol 126, 511-518.
  8. Choi, D. 2007. Ethylen-induced stem growth of deepwater rice is correlated with expression of gibberellin- and abscisic acid-biosynthetic genes. J Plant Biol 50, 595-599. https://doi.org/10.1007/BF03030714
  9. Choi, J. I., Kim, Y. J., Kim, J. H., Song, B. S., Yoon, Y., Byun, M. W., Kwon, J. H., Chun, S. S. and Lee, J. W. 2009. Antioxidant activities of the extract fractions from Suaeda japonica. J Korean Soc Food Sci Nutr 38, 131-135. https://doi.org/10.3746/jkfn.2009.38.2.131
  10. Cosgrove, D. J. 1998. Cell wall loosening by expansins. Plant Physiol 118, 333-339. https://doi.org/10.1104/pp.118.2.333
  11. Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407, 321-326. https://doi.org/10.1038/35030000
  12. Gao, X., Liu, K. and Lu, Y. T. 2010. Specific roles of AtEXPA1 in plant growth and stress adaptation. Russ. J Plant Physiol 57, 241-246.
  13. Hiwasa, K., Rose, J. K. C., Nakano, R., Inaba, A. and Kubo, Y. 2003. Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Plant Physiol 117, 564-572. https://doi.org/10.1034/j.1399-3054.2003.00064.x
  14. Kende, H., Bradford, K., Brummell, D., Cho, H. T., Cosgrove, D. J., Fleming, A., Gehring, C., Lee, Y., McQueen-Mason, S. M., Rose, J. K. C. and Voesenek, L. A. 2004. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55, 311-314. https://doi.org/10.1007/s11103-004-0158-6
  15. Kim, J. H., Cho, H. T. and Kende, H. 2000. ${\alpha}$-Expansins in the semiaquatic ferns Marsilea Quadrifolia and Regnellidium diphyllum: evolutionary aspects and physiological role in rachis elongation. Planta 212, 85-92. https://doi.org/10.1007/s004250000367
  16. Kim, Y. A., Um, Y. R., Lee, J. I., Kim, H. J., Lim, S. Y., Nam, T. J. and Seo, Y. W. 2009. Comparative studies on the fatty acid compositions of the korean salt marsh plants in the west sea. Korean J Biotechnol Bioeng 24, 521-526.
  17. Lee, D. K., Ahn, J. H., Song, S. K., Choi, Y. D. and Lee, J. S. 2003. Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131, 985-997. https://doi.org/10.1104/pp.009902
  18. Lee, H. J., Kim, Y. A., Ahn, J. W., Lee, B. J., Moon, S. G. and Seo, Y. 2004. Screening of peroxynitrite and DPPH radical scavenging activities from salt marsh plants. Korean J Biotechnol Bioeng 19, 57-61.
  19. Lee, Y., Choi, D. and Kende, H. 2001. Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 2001 4, 527-532.
  20. Lee, Y. and Kende, H. 2002. Expression of alpha-expansin and expansin-like genes in deepwater rice. Plant Physiol 130, 1396-1405. https://doi.org/10.1104/pp.008888
  21. Min, B. M. 1998. Vegetation on the west coast of Korea. Ocean Polar Res 20, 167-178.
  22. Mim, B. M. 2005. Seed distribution and burial properties of Suaeda japonica in tidal-flat. J Ecol Field Biol 28, 141-147. https://doi.org/10.5141/JEFB.2005.28.3.141
  23. Mühling, K. H. and Lauchli, A. 2002. Effect of salt sterss on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. Plant Physiol 159, 137-146. https://doi.org/10.1078/0176-1617-00701
  24. Pitann, B., Zorb, C. and Mühling, K. H. 2009. Comparetive proteome analysis of maize (Zea mays L.) expansins under salinity. J Plant Nutr Soil Sci 172, 75-77. https://doi.org/10.1002/jpln.200800265
  25. Rose, J. K. C., Lee, H. H. and Bennett, A. B. 1997. Expression of a divergent expansin gene is fruit-specific and ripening- regulated. Proc Natl Acad Sci USA 94, 5955-5960. https://doi.org/10.1073/pnas.94.11.5955