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Abstract—We describe a neural stimulator front-end 

with arbitrary stimulation waveform generator and 

adaptive supply regulator (ASR) for visual prosthesis. 

Each pixel circuit generates arbitrary current 

waveform with 5 bit programmable amplitude. The 

ASR provides the internal supply voltage regulated to 

the minimum required voltage for stimulation. The 

prototype is implemented in 0.35 µm CMOS with HV 

option and occupies 2.94 mm
2
 including I/Os.    

 

Index Terms—Neural stimulator, adaptive supply 

regulator (ASR), arbitrary waveform, visual 

prosthesis   

I. INTRODUCTION 

Over the past decades, visual prostheses based on 

functional electrical stimulation (FES) have been brought 

to great public attention for treating retinal degenerative 

diseases such as retinitis pigmentosa (RP) and age-

related macular degeneration (AMD) [1]. The conceptual 

diagram of the visual prostheses is shown in Fig. 1. In the 

retinal structure of RP or AMD patients, the optic nerve 

is intact, however, the rods and cones are degenerated, 

thus the neural reaction is not occurred by the external 

light stimulation. The visual prostheses system using 

FES can bypass these defects, and can directly stimulate 

the optic nerve. 

FES can be performed by either current or voltage 

stimulation pulses. Generally the current stimulation 

method is preferred over the voltage stimulation method 

in the visual prostheses because the current stimulation 

can accurately control the delivered amount of charge. 

The current stimulation, however, can generate quite 

high electrode voltages that may harm the tissues or 

damage the electrodes [2].  

The current stimulators generally require high output 

voltage compliance, because the stimulators inject the 

biphasic current pulse with the maximum amplitude of 

several hundred µA into the microelectrodes and tissues 

of several tens kΩ impedance. For example, the output 

voltage compliance of 10 V (= ±5 V) is required to drive 

the 10 kΩ with the biphasic current pulse of ±500 µA. 

Thus, the previous current stimulators are implemented 

 

Fig. 1. Concept of visual prostheses. 
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using high voltage (HV) CMOS process, and adopt the 

static high supply voltage of 5 to 35 V [1, 3-6]. Recently, 

neural stimulator with voltage compliance monitoring 

circuit for supply adaptation is reported [7], however, the 

circuit for controlling supply voltage is not included in 

[7]. 

The programmability of stimulation waveform is also 

one of the important issues. While most stimulators use 

biphasic current-mode rectangular waveforms, the neural 

researchers discover that the non-rectangular waveforms 

such as exponential, Gaussian and ramp, and so on, can 

provide more advanced neural stimulation effect [8]. The 

previous researches show that different types of 

applications need different stimulation waveforms in 

order to produce an optimum stimulation effect [7, 8]. 

For example, the repeated pulse train was more effective 

than single pulse stimulation. The asymmetric biphasic 

pulses have been proven to limit channel interaction 

between adjacent stimulation sites, and avoid new 

excitation during the discharge phase. The exponential 

decrease can reduce the tissue damage. The interphase 

delay can provide stronger stimulation effects. Recently 

the neural stimulator with arbitrary programmable pulse 

shape is reported [8]. 

This paper proposes a 16 channel arbitrary waveform 

current stimulator front-end with the adaptive supply 

voltage regulator (ASR) for the visual prosthesis, as 

shown in Fig. 2. Each stimulator pixel circuit includes 

decoding logics, 5 bit digital to analog converter (DAC), 

biphasic electrode driver and ASR. Each pixel circuits 

can generate the arbitrary stimulation waveform using 

the received data packets from global data bus. 

In the proposed circuit, the internal power supply 

voltage is not static, but adaptively regulated to the 

minimum required voltage for stimulation, thus current 

stimulation with lower voltage than previous static HV 

stimulators can be achieved. The ASR provides the 

adaptively regulated internal supply voltage using current 

feedback loop. Moreover, the current feedback loop, 

which monitors the stimulating current and feeds back 

the monitored current to the regulator, gives the 

robustness to the variations of the load impedances. 

II. SYSTEM DESIGN 

1. Top Level Operation 

 

The system consists of the reference circuit, control 

logic and the 16 channel (4 by 4) stimulator pixel circuit 

arrays. The each pixel circuit includes digital logic, 5 bit 

digital to analog converter (DAC) and biphasic current 

driver with the ASR. The timing diagram of the system is 

 

 

Fig. 2. Top-level block diagram of stimulator front-end. 
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given in Fig. 3. A data packet, which determines the 

current status of 16 channel stimulation pixels, includes 

the stimulation address, stimulation amplitude, 

stimulation enable, stimulation direction, and charge 

balancing enable signals. The default stimulation period 

of single data packet is 800 µs. The 4 bit address signal, 

ADDR[3:0], determines which pixel is stimulated. In the 

data packet, ADDR[3:0] is increased from “0000” to 

“1111”. The amplitude of the stimulation current is 

determined using 5 bit amplitude signal, AMPL[4:0]. 

The STIM_EN determines whether the stimulation of the 

target pixel is enabled or not. The CH_PUSH determines 

whether the direction of the stimulation current is push or 

sink. After the stimulation, the passive charge balancing 

operation is performed using BALEN. Each pixel circuit 

includes the decoder and flip-flops, and keeps the current 

status until the next commands are applied, and the 

arbitrary waveform per individual pixel can be generated.  

2. Current Stimulator with Adaptive Supply Regulator 

 

The schematic of the proposed biphasic current 

stimulator with ASR is shown in Fig. 4. The operation 

status of the stimulator is determined by the input signals, 

STIM_EN, CH_PUSH and BALEN. When STIM_EN is 

‘H’, this circuit is activated. The direction of the 

stimulating current is determined by CH_PUSH. When 

CH_PUSH is ‘H’, the current flows in forward direction, 

from channel electrode to reference electrode. When 

CH_PUSH is ‘L’, the current flows in backward 

direction, from reference electrode to channel electrode. 

After the stimulation, the charge balancing, which is to 

prevent the electrolytic damage by the remaining charge, 

is enabled by BALEN. 

When CH_PUSH = ‘H’, for example, the stimulation 

current flows through PM2 - channel electrode - retina 

cell - reference electrode - NM7. If the required output 

voltage compliance is high, due to the high stimulation 

current or the large impedance between electrodes, the 

sourcing current source (PM2) cannot be operated in 

saturation region, while sourcing current monitor (PM3) 

is in saturation region. The actual stimulation current of 

NM7 is monitored by sinking current monitor (NM8), 

which is in saturation region. In anodic stimulation, IDS 

of PM3 and IDS of NM8 mean the desired current and 

monitored current, respectively. The current difference, 

which is the subtraction of the monitored current from 

desired current, is fed back to the supply regulator. This 

feedback loop increases the internal supply voltage when 

the monitored current is smaller than the desired current, 

and reduces the internal supply voltage when the 

STIM_EN
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Fig. 3. Timing diagram. 

 

 

 

Fig. 4. Stimulator pixel circuit. 
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monitored current is higher than the desired current. Thus, 

the internal supply is adaptively regulated to the 

minimum required supply voltage using this current 

feedback loop. Also, the current feedback loop gives the 

robustness to the variations of the load impedances. 

The simulation results of stimulation current variation 

and adaptive supply voltage with varying load impedance 

are shown in Fig. 5(a) and Fig. 5(b), respectively. In this 

simulation, the stimulation current amplitude, AMPL[4:0] 

is set to “10000”, and the load impedance is increased from 

0 Ohm to 20 kOhm. In Fig. 5(a), the stimulation current 

variation of the ASR stimulator is from +6.75 % to -7.25 %, 

while the stimulation current variation of the conventional 

stimulator with static 15 V supply is from +11.30 % to - -

11.03 % with the load impedance variation from 0 Ohm to 

20 kOhm. Fig. 5(b) shows the simulated internal supply 

voltage of ASR. The internal supply voltage of ASR is 

increased from 5.6 V to 15 V. 

III. PROTOTYPE MEASUREMENTS 

The die photograph of the fabricated stimulator chip is 

shown in Fig. 6(a). The chip is fabricated in 0.35 µm 

CMOS with HV option and occupies 2.94 mm2 including 

I/O pads. The single pixel circuit consumes 0.12 mm2. 

With this pixel circuit, 256 channel stimulator can be 

realized on less than 6 × 6 mm2, which is feasible for 

implantation. The measurement setup is shown in Fig. 

6(b). The fabricated chip is directly wire-bonded to the 

evaluation board (chip-on-board). The stimulation data 

packets are generated using user interface and data 

acquisition (DAQ) system.  

With the external HV supply of 15 V and load 

impedance of 10 kΩ, the measured internal supply 

voltage of ASR and stimulation current is shown in Fig. 

7. When the input code of AMPL[4:0] is increased from 

“00000” to “11111”, the stimulation current is increased 

from 0 µA to 880 µA, and the adaptive supply voltage is 

increased from 5.6 V to 15 V.  

Fig. 8 shows the measured and simulated stimulation 

current with varying load impedance. Here, the 

stimulation current amplitude, AMPL[4:0] is set to 

“10000”. The measured stimulation current is smaller 

than simulated current of 22 µA at 10 kOhm load 
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(a) Stimulation current variation vs. load impedance 
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(b) Adaptive supply voltage vs. load impedance 

Fig. 5. Simulation results. 

 

 

(a) Die photograph 

 

 

(b) Measurement setup 

Fig. 6. Fabrication results. 
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impedance. The measured variation of stimulation 

current is from +8.04 % to -9.05 %, while the simulated 

variation is from +6.75 % to -7.25 %, with the load 

impedance variation of 0 Ohm to 20 kOhm. 

Fig. 9 shows the various stimulation current 

waveforms generated by the fabricated stimulator, which 

include biphasic square waveforms with interphase delay 

(Fig. 9(a)), biphasic repeated pulse train waveform (Fig. 
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Fig. 7. Measured adaptive supply voltage and stimulation current.   Fig. 8. Stimulation current with varying load impedance. 
 

-0.04 -0.02 0.00 0.02 0.04

-800

-600

-400

-200

0

200

400

600

800

S
ti
m
u
la
ti
o
n
 c
u
rr
e
n
t 
[u
A
]

Time [s]               
-0.04 -0.02 0.00 0.02 0.04

-800

-600

-400

-200

0

200

400

600

800

S
ti
m
u
la
ti
o
n
 c
u
rr
e
n
t 
[u
A
]

Time [s]       

          (a) Biphasic square waveform with interphase delay         (b) Biphasic repeated pulse train waveform 
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Fig. 9. Various stimulation waveforms generated by fabricated circuit. 
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9(b)), sinusoidal waveform (Fig. 9(c)), exponential 

cathodic and anodic waveform (Fig. 9(d)), imbalanced 

fast cathodic pulse and slow anodic pulse (Fig. 9(e)), 

imbalanced fast anodic pulse and slow cathodic pulse.  

The comparison with previous stimulators is given in 

Table 1. Compared to the previous stimulators, the 

supply adaptation and wave-shape programmability are 

main advantage of this work. However, the high static 

power consumption of 7.68 mW, which is mainly due to 

the standby current of ASR, is drawback. In the next 

version of stimulator, the static power consumption will 

be reduced by adding low power standby mode to ASR. 

IV. CONCLUSIONS 

A 16 channel, 5 bit controllable arbitrary waveform 

neural stimulator front-end IC with ASR is developed. 

Each pixel circuit can generate the stimulation current 

with programmable wave-shape. The more advanced 

neural stimulation effect for visual prosthesis can be 

achieved with this high wave-shape programmability. 

The internal supply of the each stimulator pixel is 

adaptively regulated by ASR. The ASR enables the lower 

voltage stimulation than conventional static HV supply 

stimulator when the required voltage compliance is small. 

Also, the ASR gives the robustness to the variations of 

the load impedances. 
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