DOI QR코드

DOI QR Code

Evolution of Hydrothermal Fluids at Daehwa Mo-W Deposit

대화 Mo-W 열수 맥상 광상의 유체 진화 특성

  • Jo, Jin Hee (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 조진희 (충북대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Received : 2013.02.09
  • Accepted : 2013.02.24
  • Published : 2013.02.28

Abstract

The Daehwa Mo-W deposit is located within the Gyeonggi massif. Quartz and calcite vein mineralization occurred in the Precambrian gneiss and Jurassic granites. Three main types (Type I: liquid-rich $H_2O$ type, Type II: vapor-rich $H_2O$ type, Type III: $CO_2-H_2O$ type) of fluid inclusions were observed and are classified herein based on their phase relations at room temperature. Within ore shoots, type III fluid inclusions have been classified into four subtypes (type IIIa, IIIb, IIIc and IIId) based on their volume percent of aqueous and carbonaceous ($CO_2$) phase at room temperatures combined with their total homogenization behavior and homogenization behavior of $CO_2$ phase. Homogenization temperatures of primary type I fluid inclusions in the quartz range from $374^{\circ}C$ to $161^{\circ}C$ with salinities between 13.6 and 0.5 equiv. wt.% NaCl. Homogenization temperatures of primary type III fluid inclusions in quartz of main generation, are in the range of $303^{\circ}C$ to $251^{\circ}C$. Clathrate melting temperatures of the type III fluid inclusions were 7.3 to $9.5^{\circ}C$, corresponding to salinities of 5.2 to 1.0 equiv. wt. % NaCl. Melting and homogenization temperatures of $CO_2$ phase of type III fluid inclusions were -57.4 to $-56.6^{\circ}C$ and 29.0 to $30.8^{\circ}C$, respectively. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. The Daehwa early hydrothermal system is characterized by $H_2O-CO_2$-NaCl fluid at about $400^{\circ}C$. The main mineralization occurred by $CO_2$ immiscibility at temperatures of about 300 to $250^{\circ}C$. At the late base-metal mineralization aqueous fluid formed by mixing with cooler and less saline meteoric groundwater.

대화광상은 경기육괴의 편마암류와 화강암류에 발달한 열극을 충진 발달한 함 Mo-W 열수 맥상 광상이다. 대화광상의 몰리브덴-텅스텐 광화작용과 관련된 주요 수반광물인 석영에서 관찰되는 유체포유물은 상온 ($20^{\circ}C$) 에서의 상(phase) 관계와 냉각 및 가열 실험을 통해 측정된 균일화 온도와 상변화를 기초로 하여 3가지 주요 유형 (Type I, 액상이 우세한 $H_2O$-NaCl 유형; Type II, 기상이 우세한 $H_2O$-NaCl 유형; Type III; $CO_2-H_2O$-NaCl 유형) 으로 분류된다. 또한, 함 $CO_2$ Type III 유체포유물은 $CO_2$ 균일화 및 최종 균일화 특성을 바탕으로 4가지 유형 (IIIa, IIIb, IIIc, IIId)으로 세분된다. 대화광상 Type I 유체포유물의 균일화 온도는 약 $374^{\circ}C{\sim}161^{\circ}C$로 넓은 범위를 보여주며, 염농도 역시 약 13.6~0.5 equiv. wt. % NaCl의 넓은 조성 범위를 보인다. Type III 유체포유물 냉각 실험 시 측정된 $CO_2$ 상의 용융 온도는 $-57.4{\sim}-56.6^{\circ}C$이며, $CO_2$ 균일화 온도는 $29.0{\sim}30.8^{\circ}C$이다. 또한 $CO_2$ clathrate 용융 온도는 $7.3{\sim}9.5^{\circ}C$로 염농도는 5.2~1.0 equiv. wt. % NaCl이고, 최종 균일화 온도는 $303^{\circ}C{\sim}251^{\circ}C$로 비교적 좁은 범위로 확인되었다. $CO_2-H_2O$-NaCl계 (Type III) 유체포유물의 경우 온도가 감소함에 따라 염농도 역시 감소하는데, 이는 높은 염농도를 가진 $H_2O$-NaCl계 유체와 낮은 염농도를 가진 $CO_2-H_2O$-NaCl계 유체의 불혼화에 의해 열수의 진화가 이루어졌음을 의미한다. Type I 유체포유물은 온도 감소와 염농도 사이의 뚜렷한 변화가 인지되지 않았다. 따라서, 대화 열수계의 함 몰리브덴-중석 광화작용은 $400^{\circ}C$, 5.2 equiv. wt.% NaCl의 염농도를 가진 광화유체로부터 시작되어, 약 $350^{\circ}C$ 부근에서 유체의 불혼화 용융에 의해 진행되었다. 이후 대화 열수계에 유입된 상대적으로 낮은 온도와 염농도를 갖는 유체 (천수 또는 상대적으로 높은 물/암석 비를 갖는 열수유체) 의 혼입 작용에 의해 후기 천금속 광화작용이 야기되었다.

Keywords

References

  1. Bodnar, R.J. (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-TW properties of inclusion fluids. Economic Geology, v.78, p.535-543. https://doi.org/10.2113/gsecongeo.78.3.535
  2. Burruss, R.C. (1981) Analysis of phase equilibria in C-O-H-S fluid inclusions. In : Hollister, L.S. & Crawford, M.L., (eds.). Fluid Inclusions: Application to Petrology. Mineralogy Assocication of Canada Short Course Handbook, v.6, p.39-74.
  3. Diamond, L.W. (1992) Stability of $CO_2$-clathrate + $CO_2$ liquid + $CO_2$ vapour + aqueous KCl-NaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions. Geochimica et Cosmochimica Acta, v.56, p.273-280. https://doi.org/10.1016/0016-7037(92)90132-3
  4. Haynes, F.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Economic Geology. v.80, p.1436-1439. https://doi.org/10.2113/gsecongeo.80.5.1436
  5. Hedenquist, J.W. and Henley, R.W. (1985) The importance of $CO_2$ on freezing point measurements for epithermal ore deposition. Economic Geology, v.80, p.1379-1406. https://doi.org/10.2113/gsecongeo.80.5.1379
  6. Hendel, E.M. and Hollister, L.S. (1981) An empirical empirical solvus for $CO_2$-$H_2O$-2.6 wt.% salt. Geochimica et Cosmochimica Acta, v.45, p.225-228. https://doi.org/10.1016/0016-7037(81)90166-6
  7. KORES (2010) The detailed geological survey report (Molybden : Yeonil area, Moggye area)(Uranium : Miwon area). Seoul, p.64.
  8. Kennedy, G.C. (1954) Pressure-volume-temperature relations in $CO_2$ at elevated temperatures and pressures. American Journal of Science, v.252, p.225-241. https://doi.org/10.2475/ajs.252.4.225
  9. Park, H.I. and Choi, S.W. (1974) A Study on the Fluid Inclusions in the Minerals from the Dae Hwa Tungsten-molybdenum Deposits, Jour. Korean Inst. Mining Geol. v.7, p.63-78.
  10. Park, H.I., Choi, S.W. and Kim, D.R. (1985) Fluid Inclusions of Daehwa and Donsan Tungsten-Molybdenum Deposits, Jour. Korean Inst. Mining Geol, v.18, p.225-237.
  11. Park, B.S. and Yeo, S.C. (1971) Explanatory Text of The Geological Map of Moggye Sheet. Geological Survey of Korea.
  12. Potter, R.W., Clynne, M.A. and Brown, D.L. (1978) Freezing point depression of aqueous sodium chloride solutions. Economic Geology, v.73, p.284-285. https://doi.org/10.2113/gsecongeo.73.2.284
  13. Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, 239p.
  14. Shin, J.B. (1972) Daehwa, Deposits of Korea, Korea Mining Promotion Corporation, v.4, p.254-258.
  15. So, C.S., Kelvin L. Sheltom, David E. Seidemann and Brian J. Skinner (1983) The Dae Hwa Tungsten-Molybdenum mine, Republic of Korea: A geochemical study. Economic Geology, v.78, p.920-930. https://doi.org/10.2113/gsecongeo.78.5.920
  16. Span, R. and Wagner, W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at presures up to 800 MPa. Journal of Physical Chemistry Reference Data, v.35, p.1509-1596.
  17. Todheide, K. and Frank, E.U. (1963) Das zwei-phasengebeit und die kritische kurve in sysstem kohlendioxid-wasser bis zu drucken von 3500 bar. Z. Phys. Chem. N. F., v.37, p.388-401.

Cited by

  1. A Study on the Characteristics of W-Mo Ore Deposit in Bayan-Onjuul, Mongolia Using Magnetic Data vol.17, pp.4, 2014, https://doi.org/10.7582/GGE.2014.17.4.202