DOI QR코드

DOI QR Code

Change of Antioxidant Activities in Carrots (Daucus carota var. sativa) with Enzyme Treatment

효소처리 가공이 당근(Daucus carota var. sativa)의 항산화 활성 변화에 미치는 영향

  • 유진균 (차바이오 에프앤씨 기업부설 연구소) ;
  • 이진희 (차바이오 에프앤씨 기업부설 연구소) ;
  • 조형용 (차바이오 에프앤씨 기업부설 연구소) ;
  • 김정국 (차바이오 에프앤씨 기업부설 연구소)
  • Received : 2012.10.17
  • Accepted : 2012.12.04
  • Published : 2013.02.28

Abstract

The purpose of this research is to minimize the loss of nutrients in carrots (Daucus carota var. sativa). A protopectinase was used to enzymatically macerated and separate cells without damage. The enzyme modification group's collection rate was 81% (residue rate 19%), while the grinding process group's collection rate was 56% (residue rate 44%)-an over 20% of collection rate difference. Thus we predicted a big difference in transference number after the process and wastage. In comparing ingredient changes in the enzyme modification group versus the grinding process group, the content of ${\beta}$-carotene (the carrot's main ingredient) showed a change in protection factor (PF) ($2.2{\pm}0.2$ PF, $1.4{\pm}0.4$ PF, respectively), total polyphenol content ($89{\pm}3.42{\mu}g/g$, $64{\pm}4.16{\mu}g/g$, respectively), and total flavonoid content ($68{\pm}2.73{\mu}g/g$, $41{\pm}3.26{\mu}g/g$, respectively). Thus we confirmed that nutrient destruction, due to cell membrane preservation, occurred less often in the enzyme modification process than the mechanical grinding process group. We also measured DPPH radical scavenging activity, hydroxyl radical scavenging activity, and nitrite scavenging activity. DPPH radical scavenging activity was $87{\pm}0.29%$ and $74{\pm}1.56%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Hydroxyl radical scavenging activity was $44{\pm}0.49%$ and $32{\pm}0.48%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Nitrite scavenging activity was $59{\pm}0.53%$ and $46{\pm}0.62%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Our results show that cell membrane preservation, via the protopectinase enzyme process, decreases the loss of nutrients and still preserves inherent antioxidants.

본 연구는 당근(Daucus carota var. sativa) 가공방법 중 현재 주로 사용되고 있는 기계적 마쇄 공정으로 인하여 파괴되는 영양소의 손실을 최소화하기 위하여 식물 세포벽에 존재하는 불용성 물질인 protopectin을 가수분해하여 수용성 물질인 pectin으로 전환시키는 효소인 protopectinase를 이용하여 세포의 막을 보존하고 세포 안에 존재하는 영양소의 손실의 차이를 알아보고자 하였다. 당근의 회수율을 측정한 결과 효소처리군과 마쇄 공정 처리군을 비교하였을 때 효소처리군의 회수율은 81%, 잔사율은 19%을 보인 반면, 마쇄처리군은 회수율 56%, 잔사율 44%를 보여 약 20% 정도의 회수율 차이를 보였다. 이는 가공 후 수율 및 폐기량에서 많은 차이를 보일 것으로 판단된다. 당근의 효소 처리군과 마쇄 처리군의 성분 변화를 비교하기 위하여 당근의 주요성분인 ${\beta}$-carotene의 함량 변화를 측정한 결과 protection factor(PF) 각각 $2.2{\pm}0.2$ PF, $1.4{\pm}0.4$ PF의 차이를 보였으며, 총 폴리페놀 함량은 $89{\pm}3.42{\mu}g/g$, $64{\pm}4.16{\mu}g/g$, 총 플라보노이드 함량은 각각 $68{\pm}2.73\mu}g/g$, $41{\pm}3.26{\mu}g/g$을 보임으로써 세포막의 보존으로 인한 영양소의 파괴가 기계적 마쇄 처리군에 비하여 덜 발생한 것을 확인할 수 있었다. 두 처리군의 항산화력을 측정하기 위하여 DPPH radical 소거능과 hydroxyl radical 소거능, 아질산염 소거능을 측정하였으며 DPPH radical 소거능은 1,000 ppm에서 $87{\pm}0.29%$, $74{\pm}1.56%$로 약 13%의 DPPH radical 소거능을 보였고, hydroxyl radical 소거능 결과 10,000 ppm에서 $44{\pm}0.49%$$32{\pm}0.48%$로 약 12%의 hydroxyl radical 소거능을 보였다. 아질산염 소거능 측정 결과 1,000 ppm에서 $59{\pm}0.53%$$46{\pm}0.62%$로 약 13% 높은 아질산염 소거능을 보였다. 이는 protopectinase 효소 처리로 인한 세포막의 보존이 가공 중 발생되는 영양소의 손실을 줄임과 동시에 당근이 가지고 있는 항산화 물질들을 보존하고 있음을 확인할 수 있었다.

Keywords

References

  1. Oh YS, Hwang JH, Oh HJ, Lim SB. 2012. Physicochemical properties and antioxidative activities of mixed citrus and carrot juic. J Korean Soc Food Sci Nutr 41: 598-604. https://doi.org/10.3746/jkfn.2012.41.5.598
  2. Nantz MP, Rowe CA, Nieves C Jr, Percival SS. 2006. Immunity and antioxidant capacity in humans is enhanced by consumption of a dried, encapsulated fruit and vegetable juice concentrate. J Nutr 136: 2606-2610.
  3. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stressinduced cancer. Chem Biol Interact 160: 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  4. Williams GM, Latropoulos MJ, Whysner J. 1999. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food Chem Toxicol 37: 1027-1038. https://doi.org/10.1016/S0278-6915(99)00085-X
  5. Ha JL, Bae JS, Park MK, Kim YU, Ha SH, Bae JM, Back KH, Lee CH, Lee SW, Ahn MJ. 2009. Quantitative analysis of carotenoids in carrot cultivars produced in Korea. J Environ Sci 18: 1135-1141. https://doi.org/10.5322/JES.2009.18.10.1135
  6. Pfander H. 1992. Carotenoids: an overview. Methods Enzymol 213: 3-13. https://doi.org/10.1016/0076-6879(92)13105-7
  7. Demming-Adams B, Gilmore AM, Adam WW 3rd. 1996. Carotenoids 3: in vivo functions of carotenoids in higher plants. FASEB J 10: 403-412.
  8. Nishino H, Murakoshi M, Tokuda H, Satomi Y. 2009. Cancer prevention by carotenoids. Arch Biochem Biophys 483: 165-168. https://doi.org/10.1016/j.abb.2008.09.011
  9. Stahl W, Sies H. 2005. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740: 101-107. https://doi.org/10.1016/j.bbadis.2004.12.006
  10. Young CY, Yuan HQ, He ML, Zhang JY. 2008. Carotenoids and prostate cancer risk. Mini Rev Med Chem 8: 529-537. https://doi.org/10.2174/138955708784223495
  11. Lee DH, Lee SC, Hwang YI. 2000. Processing properties of kiwifruit treated with protopectinase. J Korean Soc Food Sci Nutr 29: 401-406.
  12. Sakai T, Okushima M. 1982. Purification and crystallization of a protopectin-solubilizing enzyme from trichosporon penicillatum. Agric Biol Chem 46: 667-676. https://doi.org/10.1271/bbb1961.46.667
  13. Sakai T, Sakamoto T. 1990. Purification and some properties of a protopectin-solubilizing enzyme that has potent activity of sugar beet protopectin. Agric Biol Chem 54: 879-889. https://doi.org/10.1271/bbb1961.54.879
  14. Andarwulan N, Shetty K. 1999. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium- transformed roots of anise (Pimpinella anisum L.). J Agric Food Chem 47: 1776-1780. https://doi.org/10.1021/jf981214r
  15. Singleton VL, Rossi Jr JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  16. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  17. Blois MS. 1958. Antioxidant determinations by the use of a stale free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  18. Chung MJ, Sung NJ, Park CS, Kweon DK, Mantovani A, Moon TW, Lee SJ, Park KH. 2008. Antioxidantive and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur J Pharmacol 578: 159-170. https://doi.org/10.1016/j.ejphar.2007.09.036
  19. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibitory of nitrosamine formation by non-dialyzable melanoidins. Agric Biol Chem 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  20. Kim DS, Ahn BW, Yeum DM, Lee DW, Kim ST, Park YH. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components. Bull Korean Fish Soc 20: 463-468.
  21. Choi SY, Cho HS, Sung NJ. 2006. The antioxidative and nitrite scavenging ability of solvent extracts from wild grape (Vitis Coignetiea) skin. J Korean Soc Food Sci Nutr 35: 961-966. https://doi.org/10.3746/jkfn.2006.35.8.961
  22. Ahn YJ, Lee SH, Kang SJ, Hwang BY, Park WY, Ahn BT, Ro JS, Lee KS. 1996. The phenolic components of Sapium japonicum. Yakhak Hoeji 40: 183-192.
  23. Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res 36: 217-233. https://doi.org/10.1080/10715760290006484
  24. Lee KI, Kim SM. 2009. Antioxidative and antimicrobial activities of Eriobotrya japonica Lindl. leaf extracts. J Korean Soc Food Sci Nutr 38: 267-273. https://doi.org/10.3746/jkfn.2009.38.3.267
  25. Choe M, Kim DJ, Lee HJ, You JK, Seo DJ, Lee JH, Chung MJ. 2008. A study on the glucose-regulating enzymes and antioxidant activities of water extracts from medicinal herbs. J Korean Soc Food Sci Nutr 37: 542-547. https://doi.org/10.3746/jkfn.2008.37.5.542
  26. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984.
  27. Do JR, Kim SB, Park YH, Park YB, Kim DS. 1993. The nitrite-scavenging effects by the component of traditional tea materials. Korean J Food Sci Technol 25: 530-534.
  28. Shin JH, Choi DJ, Lee SJ, Cha JY, Sung NJ. 2008. Antioxidant activity of black garlic (Allium sativum L.). J Korean Soc Food Sci Nutr 37: 965-971. https://doi.org/10.3746/jkfn.2008.37.8.965
  29. Chung MJ, Lee SH, Sung NJ. 2002. Inhibitory effect of whole strawberries, garlic juice or kale juice on endogenous formation of N-nitrosodimethylamine in humans. Cancer Lett 182: 1-10. https://doi.org/10.1016/S0304-3835(02)00076-9
  30. Choi SY, Chung MJ, Lee SJ, Shin JH, Sung NJ. 2007. N-nitrosamine inhibition by strawberry, garlic, kale, and the effects of nitrite-scavenging and N-nitrosamine formation by functional compounds in strawberry and garlic. Food Control 18: 485-491. https://doi.org/10.1016/j.foodcont.2005.12.006
  31. Noh KS, Yang MO, Cho EJ. 2002. Nitrite scavenging effects of Umbelliferaeceae. Korean J Soc Food Cookery Sci 18: 8-12.

Cited by

  1. Screening of Personalized Immunostimulatory Activities of Saengsik Materials and Products Using Human Primary Immune Cell vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1325
  2. Effects of Various Pretreatment Methods on Physicochemical and Nutritional Properties of Carrot vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1881
  3. 당근의 전처리 조건에 따른 효소의 연화 효과 비교 vol.50, pp.3, 2013, https://doi.org/10.9721/kjfst.2018.50.3.292
  4. 보리수 나무 열매로부터 라이코펜 생산을 위한 효소 분해 및 유기용매 추출 복합 공정의 최적화 vol.21, pp.4, 2020, https://doi.org/10.5762/kais.2020.21.4.293
  5. Residual Safety of Boscalid, Fluxapyroxad, Hexaconazole, Pencycuron, Pyraclostrobin, and Thifluzamide as Fungicides for the Prevention of Sclerotinia Rot on Carrot vol.25, pp.1, 2013, https://doi.org/10.7585/kjps.2021.25.1.11