DOI QR코드

DOI QR Code

Improvement of Capturing Velocity in the Fume Hood using Computational Fluid Dynamics(I) - Uniform flow

전산유체역학을 이용한 흄후드 제어유속 개선(I) - 균일류

  • Received : 2013.01.02
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

This study used Computational Fluid Dynamics(CFD) to assess the properties of the air current inflow and the flow velocity distribution in the fume hood. In order to verify the effect of improvement, it was also predicted the characteristics of the flow pattern in case the hood face is structurally improved. The assessment of the capture velocity with the existing fume hood confirmed maximum 23 to 30% difference as compared to the root mean square (RMS). And the hood face showed great difference in flow velocity, with the flow velocity in the upper part is 58 to 68% faster than that in the lower part of the hood. So, as a result of the improvement of the hood designed to maintain a steady exhaust at the hood face (that is, installing a baffle on the inner wall and designing the slot type face), a difference of maximum 7% as compared to RMS appeared while maximum 12% differentiation in flow velocity through sections was predicted, showing mitigation of much of the difference in control velocity as compared to the previous structure.

본 연구에서는 전산유체역학(CFD)를 이용하여 흄후드(fume hood)의 기류 유입특성 및 유속 분포를 평가하였다. 또한, 후드 개구면을 균일류 형성에 필요한 구조로 개선하였을 경우의 유동 특성을 예측하여 개선 효과를 검증하였다. 기존의 흄후드의 제어유속을 평가한 결과, 제곱평균(RMS)값과 비교했을 때 최대 23~30%의 편차가 있음을 확인하였다. 또한, 후드의 상부 유속이 하부 유속보다 58~68% 정도 빠른 것으로 나타나 후드 개구면에서의 유속 불균형이 매우 심한 것으로 평가되었다. 이에 후드 개구면에서의 균일한 배기흐름을 유지하기 위해 후드를 개선(안쪽벽에 배플 설치 및 슬롯 타입의 개구부 설계)한 결과, RMS값 대비 최대 7%의 편차를 보였으며 구간별 유속 편차는 최대 12% 정도로 예측되어 기존 구조에 비해 제어유속의 불균형이 많이 해소되는 것을 확인할 수 있었다.

Keywords

References

  1. American Conference of Governmental Industrial Hygienists (ACGIH), Industrial Ventilation Manual of Recommended Practice, 24th Edition, 2001.
  2. Kumala, I., Advanced Design of Local Ventilation Systems, Finland, VTT Publications, 1997.
  3. Robinson, M et al., Recommendations for the Design of Push-pull Ventilation Systems for Open Surface Tanks, Ann. occup. Hyg., 40:693-704, 1996. DOI: http://dx.doi.org/10.1093/annhyg/40.6.693
  4. Riffat, S. B et al., CFD Prediction of k-factors of Duct Elbows, International Journal of Energy Research, 21:675-681, 1997. DOI: http://dx.doi.org/10.1002/(SICI)1099-114X(19970610) 21:7<675::AID-ER287>3.0.CO;2-Z
  5. Varley, J. O., The Effect of Turbulent Structures on Hood Design - A Review of CFD and Flow Visualization Studies, HVAC & R RESEARCH, vol. 3., 1997.
  6. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp, 1980
  7. J.M. Berkoe, D.M.M.Lane, and B.M.Rosendall, Computerized fluid Dynamic(CFD) modeling, an important new engineering tool for design of smelting furnaces, 4th International Conference COPPER 99-COBRE 99, vol. 4, pp.53-66, 1999.
  8. Kumala, I., The Effect of Contaminant Source Location on Worker Exposure in the Near-wake Region, Finland, VTT Publications, 1995.
  9. Flynn and Ljungqvist, A Review of Qake Effects on Worker Exposure, Ann. occup. Hyg. 39:211-221, 1995. DOI: http://dx.doi.org/10.1093/annhyg/39.2.211
  10. Hyun-Guk Myung, Computational Fluid Dynamics for Engineering, Han Mi publishing company, pp. 124-138, 1997.
  11. Patankar SV, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., 1980.

Cited by

  1. A Study on the Hood Performance Improvement of Pickling Tank using CFD vol.15, pp.1, 2014, https://doi.org/10.5762/KAIS.2014.15.1.593